DOI: 
10.22389/0016-7126-2017-919-1-35-39
1 Mazurov B.T.
Year: 
№: 
919
Pages: 
35-39

Siberian State University of Geosystems and Technologies

1, 
Abstract:
Geodetic data and their subsequent statistical analysis enable mathematical modeling and identifying the stress-deformed state of geodynamic systems in concern to the aspect of natural and man-made disasters prediction. Geodetic monitoring geodynamic processes is necessary for solving a number of scientific and practical tasks of geodesy i.e. expanding and maintaining the national geodetic network, studying changes in gravity field in time, using GNSS technology. Most important extension of research is mathematical modelling of geodynamic systems in a predictive order. To study the complex (nonlinear) geodynamic processes the appropriate mathematical framework should be selected. Here are theoretical foundations for studying rotation movements of the earth’s surface. A mathematical model of rotary circular structures of the Earth was mentioned. There are mathematical models explaining the nature of sudden global, regional and some local geodynamic processes. They are based on differences in temporal and spatial scales, of geodynamic systems. Theoretical bases of description rotational motions on a plane by a system of differential equations were considered. Some examples of integral curves were given. They can be qualitative characteristics of geodynamic systems. In many cases, a similar trajectory corresponds to the rotational horizontal movements of the earth’s surface.
References: 
1.   Bautin N. N., Leontovich E. A. Metody i priyomy kachestvennogo issledovaniya dinamicheskih sistem na ploskosti. M.: Nauka, 1990, 486 p.
2.   Mazurov B.T. (2007) Fields of deformations of the Mountainous Altai before the Chui earthquake. Geodesy and cartography, 68(3), pp. 48–50.
3.   Mazurov B.T. (2010) Some examples of rotational nature determination of the Earth blocks movements based on geodetic data. Geodezia i Kartografia, 71(10), pp. 58-61.
4.   Mazurov B.T., Panzhin A.A., Silaeva A.A. (2016) Structural modeling obtained by the geodesic given nym displacement by visualizing. Geodezia i Kartografia, (3), pp. 35–40. (In Russian). DOI: 10.22389/0016-7126-2016-909-3-25-40.
5.   Timofeev V. YU., Ardyukov D. G., Solov'ev V. M., Shibaev S. V., Petrov A. F., Gornov P. Yu., Shestakov N. V. Sovremennaya geodinamika Dal'nego Vostoka po rezul'tatam geofizicheskih i geodinamicheskih izmerenij. Vestn. SGGA, 2012, no. 19, pp. 30-36.
6.   Argus D. F., Gordon R. G., Heflin M. B., Ma C., Eanes R. J., Willis P., Peltier W. R., Owen S. (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geoophys J Int, Volume 180, pp. 913-960.
7.   Bird P. (2003) An updated digital model for plate boundaries. Geochemistry, Geophysics, Geosystems, Volume 4, no. 3, DOI: 10.1029/2001GC000252.
8.   DeMets C., Gordon R. G., Argus D. F. (2010) Geologically current plate motions. Geophys J Int, Volume 181, pp. 1-80.
9.   Kogan M. G., Steblov G. M. (2008) Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. J Geophys Res, Volume 113,
10.   Matsuyama T. , Iwamori H. (2016) Analysis of plate spin motion and its implications for strength of plate boundary. Earth, Planets and Space, Volume 68, DOI: 10.1186/s40623-016-0405-5.
Citation:
Mazurov B.T., 
(2017) Geodynamic systems (qualitative research rotational movements). Geodesy and cartography = Geodezia i Kartografia, (1), pp. 35-39. (In Russian). DOI: 10.22389/0016-7126-2017-919-1-35-39
Publication History
Received: 28.03.2016
Accepted: 22.09.2016
Published: 20.02.2017

Content

2017 January DOI:
10.22389/0016-7126-2017-919-1