UDC: 
DOI: 
10.22389/0016-7126-2018-933-3-52-62
1 Tikunov V.S.
2 Rylskiy I.A.
3 Lukatzkiy S.B.
Year: 
№: 
933
Pages: 
52-62

Lomonosov Moscow State University (MSU)

1, 
2, 
3, 
Abstract:
Innovative methods of aerial surveys changed approaches to information provision of projecting dramatically in last years. Nowadays there are several methods pretending to be the most efficient for collecting geospatial data intended for projecting – airborne laser scanning (LIDAR) data, RGB aerial imagery (forming 3D pointclouds) and orthoimages. Thermal imagery is one of the additional methods that can be used for projecting. LIDAR data is precise, it allows us to measure relief even under the vegetation, or to collect laser re-flections from wires, metal constructions and poles. Precision and completeness of the DEM, produced from LIDAR data, allows to define relief microforms. Airborne imagery (visual spectrum) is very widespread and can be easily depicted. Thermal images are more strange and less widespread, they use different way of image forming, and spectral features of ob-jects can vary in specific ways. Either way, the additional spectral band can be useful for achieving additional spatial data and different object features, it can minimize field works. Here different aspects of thermal imagery are described in comparison with RGB (visual) images, LIDAR data and GIS layers. The attempt to estimate the feasibility of thermal imag-es for new data extraction is made.
The research was carried out with the fi nancial support of the Ministry of Education and Science of Russia, the unique identifi er of the project RFMEFI58317X0061.
References: 
1.   Elsakov V. V. Avtomatizirovannoe deshifrirovanie ajerokosmicheskih izobrazhenij. Syktyvkar: SLI, 2013, 44 p.
2.   Karimov K. M., Onegov V. L., Kokutin S. N., Sokolov V. N., Vasev V. F. Distancionnoe teplovizionnoe zondirovanie Zemli pri reshenii geologicheskih zadach. Georesursy, 2009, no. 1(29), pp. 38–42.
3.   Medvedev E. M., Danilin I. M., Mel’nikov S. R. Lazernaja lokacija zemli i lesa: Uchebnoe posobie. – 2-e izd. Moscow: Geolidar, Geokosmos, 2007, 230 p.
4.   Blaschke T. (2004) 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-8/W2, pp. 129–132.
5.   Brent Schwarz (2010) LIDAR: Mapping the world in 3D. Nature Photonics, no. 4, pp. 429–430.
6.   Burnett C., Blaschke T. (2003) А multi-scale segmentation / object relationship modeling methodology for landscape analysis. Ecological Modeling, no. 168, pp. 233–249.
7.   Tiede D., Hochleitner G., Blaschke T. (2005) A full GIS-based workflow for tree identification and delineation using laser scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-3/W24. pp. 9–14.
8.   Vihod Kumar (2014) Extraction of forest inventory parameters and 3D modelling from airborne LIDAR. Materials of ESRI international user conference. pp. 342–351.
9.   Wehr A., Lohr U. (1999) Airborne Laser scanning – an introduction and overview. ISPRS Journal of Photogrammtry and Remote Sensing, no. 54, pp. 68–82.
10.   Zimble Daniel A, Evans David L., Carlson George C., Parker Robert C., Grado Stephen C., Gerard Patrick D. (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of the Environment, no. 87, pp. 171–182.
Citation:
Tikunov V.S., 
Rylskiy I.A., 
Lukatzkiy S.B., 
(2018) Evaluation of the expediency of using thermal i magery data for decryption exogenous processes and vegetation. Geodesy and cartography = Geodezia i Kartografia, 79(3), pp. 52-62. (In Russian). DOI: 10.22389/0016-7126-2018-933-3-52-62
Publication History
Received: 09.10.2017
Accepted: 26.01.2018
Published: 20.03.2018

Content

2018 March DOI:
10.22389/0016-7126-2018-933-3

QR-code page

QR-код страницы