UDC: 
DOI: 
10.22389/0016-7126-2018-936-6-2-8
1 Sholokhov A.V.
2 Kotov N.I.
3 Berkovich S.B.
4 Makhaev A.Y.
Year: 
№: 
936
Pages: 
2-8

Peter the Great SRF Military Academy (Serpukhov branch) 

1, 

Institute of engineering physics

2, 
3, 
4, 
Abstract:
The problem of finding optimal estimates of the azimuth using the GPS coordinates is considered. The azimuth accuracy is improved through using additional measurement data of distances between reference points. It is also possible to use the measurement data of the angles between the directions to the reference points. An original algorithm for obtaining optimal estimates of azimuths is suggested. The algorithm enables to find a priori a root mean square error of the azimuth. The accuracy of the GPS coordinates, measuring distances and angles is supposed to be known. Using the algorithm, calculating azimuth accuracy was performed and the analysis of two approaches to the reference points’ location carried out. The first approach supposes the minimum number of reference points with a given precision of the azimuth. The second one is characterized by the minimum sizes of the polygon, which are the reference points. Both approaches were considered from the point of view of achieving high accuracy of finding the azimuth. As a result the possibility of finding the azimuth with root mean square error of about 1? is confirmed, when the distance between reference points is less than 400 m.
References: 
1.   Avtomaticheskaya sistema opredeleniya astronomicheskogo azimuta (ASOA) 15Sh87. URL: http://xn--80aajzhcnfck0a.xn--p1ai/PublicDocuments/1305423.pdf
2.   Babich O. A. Obrabotka informatsii v navigatsionnyh kompleksah. Moskva: Mashinostroenie, 1991, 511 p.
3.   Giroplatformy geodezicheskie. Gyromat 3000. Metodika poverki GYROMAT 3000.001 MP: Utv. FGUP «VNIIFTRI» 30.12.2013. Mendeleevo, 2013, 6 p.
4.   Giroplatformy geodezicheskie. Gyromat 5000. Metodika poverki GYROMAT 5000 MP APM 12-15: Utv. GTsI SI OOO «Avtoprogress-M» 14.04.2015. Moskva, 2015, 6 p.
5.   GLONASS. Printsipy postroeniya i funktsionirovaniya. Pod red. A. I. Perova, V. N. Harisova. – Izd. 4-e, pererab. i dop. Moskva: Radiotehnika, 2010, 800 p.
6.   Kompaniya Sokkia predstavila novyj robotizirovannyj taheometr serii NET AXII. URL: http://www.sokkia.ru/news-room/sokkia-introduces-net-axii-measuring-station-europe
7.   Kompleks astronomicheskogo universala AU-01. Instruktsiya po jekspluatatsii AU-01.00.000 IJe. Moskva: M-vo oborony SSSR, 1987, 179 p.
8.   Kotov N. I., Berkovich S. B., Mahaev A. Ju., Fel'dsherov A. N. Obosnovanie tehnicheskih i metodicheskih reshenij po kompensatsii pogreshnostej opredeleniya astronomicheskogo azimuta vizirnoj osi astrovizira iz-za oshibok opredeleniya geometricheskih parametrov prostranstvennogo polozheniya kontrol'nogo jelementa.... Oboronnaya tehnika, 2017, no. 7–8, pp. 13-20.
9.   Lashkov N. P. Razrabotka i issledovanie metoda sovmestnoj obrabotki sputnikovyh i nazemnyh izmerenij pri sozdanii geodezicheskih setej spetsial'nogo naznacheniya: Avtoref. dis. na soisk. uch. step. kand. tehn. nauk: 25.00.32. Moskva: MIIGAiK, 2003, 23 p.
10.   Mahaev A. Ju., Bambiza A. S. Analiz uslovij vysokotochnogo azimutal'nogo orientirovaniya sputnikovoj geodezicheskoj apparaturoj. Izvestiya Instituta inzhenernoj fiziki, 2017, Vol. 1, no. 43, pp. 15–19.
11.   Prijomnik Trimble R8 GNSS. URL: https://viva-telecom.org/SHOP/FILES/TRIMBLE/trimble-r8-rp.pdf
12.   Rukovodstvo po astronomo-geodezicheskim rabotam pri topogeodezicheskom obespechenii vojsk. Ch. 2. Astronomicheskie i gravimetricheskie raboty. Moskva: VTS, 1982, 426 p.
13.   Stepanov O. A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoj informatsii. Ch. 1. Vvedenie v teoriju otsenivaniya. SPb.: Jelektropribor, 2009, 496 p.
14.   Taheometr Leica TDRA6000 // OOO «Firma G. F. K.». URL: http://www.gfk-leica.ru/files/catfiles/tps/Leica_TDRA6000_brochure_GFK.pdf
15.   Taheometr Trimble S8. URL: https://viva-telecom.org/SHOP/FILES/TRIMBLE/s8-tx.pdf
16.   Chernov I. V. Metodika primeneniya apparatury potrebitelej kosmicheskih navigatsionnyh sistem dlya avtonomnogo opredeleniya azimutov s trebuemoj tochnost'ju. Informatsiya i kosmos, 2017, no. 2, pp. 88–94.
17.   Chernov I. V., Litinskij E. I., Levadnyj Ju. V. Metod operativnogo opredeleniya vysokotochnogo azimuta s ispol'zovaniem integrirovannoj sputnikovo-giroskopicheskoj sistemy. Uchjonye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tehnicheskogo universiteta, 2017, no. I-1 (29), pp. 4–12.
18.   Leica Viva GS15 – Smart Antenna // Leica Geosystems AG – Part of Hexagon. URL: http://leica-geosystems.com/products/gnss-systems/smart-antennas/leica-viva-gs15
Citation:
Sholokhov A.V., 
Kotov N.I., 
Berkovich S.B., 
Makhaev A.Y., 
(2018) Achievable accuracy of an azimuth obtained at short range with use of GPS and geodetic instruments. Geodesy and cartography = Geodezia i Kartografia, 79(6), pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2018-936-6-2-8
Publication History
Received: 31.01.2018
Accepted: 27.04.2018
Published: 20.07.2018

Content

2018 June DOI:
10.22389/0016-7126-2018-936-6

QR-code page

QR-код страницы