ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
| 1. Василенко Д. В. Разработка алгоритма классификации плотных облаков точек на примере городской застройки // Вестник СГУГиТ. – 2024. – Т. 29. – № 6. – С. 44–52. DOI: 10.33764/2411-1759-2024-29-6-44-52. |
| 2. Захарова Л. П., Копытов А. А., Петрова Е. В., Птушкин С. В. Создание фотограмметрической модели города Москвы по материалам беспилотных летательных аппаратов // Геопрофи. – 2022. – № 6. – С. 14–19. |
| 3. Пермяков Р.В. Фотограмметрическая обработка и применение разновременных стереопар космических снимков // Геодезия и картография. – 2021. – № 8. – С. 36-44. DOI: 10.22389/0016-7126-2021-974-8-36-44. |
| 4. 3D-модель Нижнего Новгоpода // Геопpофи. – 2024. – № 4. – С. 13. |
| 5. Furukawa Y., Ponce J. (2010) Accurate, dense, and robust multi-view stereopsis // IEEE Transactions on Pattern Analysis and Machine Intelligence. 32, 8, pp. 1362–1376. DOI: 10.1109/TPAMI.2009.161. |
| 6. Gehrig S., Eberli F., Meyer T. (2009) A real-time low-power stereo vision engine using semi-global matching // Proceedings of Computer Vision Systems. pp. 134–143. DOI: 10.1007/978-3-642-04667-4_14. |
| 7. Hirschmuller H. (2008) Stereo processing by semi-global matching and mutual information // IEEE Transactions on Pattern Analysis and Machine Intelligence. 30 (2), pp. 328–341. DOI: 10.1109/TPAMI.2007.1166. |
| 8. Hirschmüller H., Buder M., Ernst I. (2012) Memory Efficient Semi-Global Matching // ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. I–3, pp. 371–376. DOI: 10.5194/isprsannals-I-3-371-2012. |
| 9. Hu Q., Yang B., Xie L., Rosa S., Guo Y., Wang Z., Trigoni N., Markham A. (2020) RandLA–Net: Efficient Semantic Segmentation of Large-Scale Point Clouds // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11105–11114. DOI: 10.1109/cvpr42600.2020.01112. |
| 10. Li Y., Bu R., Sun M., Wu W., Di X., Chen B. (2018) PointCNN: convolution on X-transformed points // Neural Information Processing Systems. pp. 828–838. |
| 11. Riegler G., Ulusoy A. O., Geiger A. (2016) OctNet: learning deep 3D representations at high resolutions // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6620–6629. DOI: 10.1109/CVPR.2017.701. |
| 12. Saouli A., Babahenini M. C., Medjram S. (2018) Accurate, dense and shading-aware multi-view stereo reconstruction using metaheuritic optimization // Multimedia Tools and Applications. 78, pp. 15053–15077. DOI: 10.1007/s11042-018-6904-6. |
| 13. Schenk T., Csatho B. (2002) Fusion of lidar data and aerial imagery for a more complete surface description // International Archives of Photogrammetry and Remote Sensing. 34, pp. 310–317. |
| 14. Tao G., Yasuoka Y. (2002) Combining high resolution satellite imagery and airborne laser scanning data for generating bare ground DEM in urban areas // Proceedings of International Workshop on Visualization and Animation of Groundscape. International Archives of Photogrammetry. Remote Sensing and Spatial Information Science. 34, pp. 310–317. |
| 15. Thomas H., Tsai Y.-H. H., Barfoot T. D., Zhang J. (2024) KPConvX: modernizing kernel point convolution with kernel attention // 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5525–5535. DOI: 10.1109/CVPR52733.2024.00528. |
| 16. Thomas H., Qi C. R., Deschaud J.-E., Marcotegui B., Goulette F., Guibas L. (2019) KPConv: flexible and deformable convolution for point clouds // Proceedings of the IEEE International Conference on Computer Vision. pp. 6410–6419. DOI: 10.1109/iccv.2019.00651. |
| 17. Qi C., Su H., Mo K., Guibas L. J. (2016) PointNet: deep learning on point sets for 3D classification and segmentation // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 77–85. DOI: 10.1109/CVPR.2017.16. |
| 18. Qi C., Yi L., Su H., Guibas L. J. (2017) PointNet++: deep hierarchical feature learning on point sets in a metric Space // Advances in Neural Information Processing Systems. pp. 5105–5114. |
| Классификация фотограмметрических облаков точек, полученных по стереопарам космических снимков в ЦФС PHOTOMOD, для решения градостроительных задач // Геодезия и картография. – 2025. – № 4. – С. 40-47. DOI: 10.22389/0016-7126-2025-1018-4-40-47 |