УДК: 
DOI: 
10.22389/0016-7126-2025-1026-12-46-55
1 Учаев Д.В.
2 Злоников Р.Р.
3 Учаев Дм.В.
Год: 
№: 
1026
Страницы: 
46-55

Московский государственный университет геодезии и картографии (МИИГАиК)

1, 
2, 
3, 
Аннотация:
В статье рассмотрена одна из ключевых проблем объектно-ориентированной классификации аэрокосмических изображений – отсутствие единого подхода к описанию классов компонентов земного покрова, что приводит к неоднозначности и низкой воспроизводимости результатов. Для решения проблемы предложена методика унифицированного описания классов компонентов земного покрова, обеспечивающая связь между семантической моделью EAGLE и количественными признаками, вычисляемыми в среде Trimble eCognition. Методика основана на создании двухкомпонентной системы реестров: реестра стандартных классов компонентов земного покрова, обеспечивающего совместимость с базовой моделью EAGLE, и реестра нестандартных классов компонентов земного покрова, позволяющего пользователям вводить более детализированные, специфичные для конкретной задачи классы, сохраняя при этом иерархическую связь со стандартной моделью. Проведено комплексное исследование эффективности признаков eCognition, цель которого сокращение количества признаков, подлежащих рассмотрению при практическом применении методики. Выявлена группа из десяти наиболее информативных признаков и предложена иерархия их применения. Результаты исследования позволят специалистам избежать необходимости полного перебора всех доступных признаков, сосредоточившись на ограниченном, но эффективном наборе, что значительно ускорит процесс разработки правил классификации и повысит объективность и воспроизводимость результатов
Исследование выполнено за счет гранта Российского научного фонда № 25-27-00361, https://rscf.ru/project/25-27-00361/

Список литературы: 
1.   Учаев Д. В., Учаев Дм. В. Разработка технологии объектно-ориентированной классификации цветных аэрокосмических изображений, основанной на онтологическом представлении знаний // Изв. вузов. Геодезия и аэрофотосъемка. – 2021. – Т. 65. – № 1. – С. 38–51.
2.   Arvor D., Durieux L., Andrés S., Laporte M.-А. (2013) Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective // ISPRS Journal of Photogrammetry and Remote Sensing. 82, pp. 125–137. DOI: 10.1016/j.isprsjprs.2013.05.003.
3.   Belgiu M., Drǎguţ L., Strobl J. (2014) Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery // ISPRS Journal of Photogrammetry and Remote Sensing. 87, pp. 205–215. DOI: 10.1016/j.isprsjprs.2013.11.007.
4.   Blaschke T., Hay G. J., Kelly M., Lang S., Hofmann P., Addink E., Feitosa R. Q., van der Meer F., van der Werff H., van Coillie F., Tiede D. (2014) Geographic object-based image analysis – towards a new paradigm // ISPRS Journal of Photogrammetry and Remote Sensing. 87, pp. 180–191. DOI: 10.1016/j.isprsjprs.2013.09.014.
5.   Cuypers S., Nascetti A., Vergauwen M. (2023) Land use and land cover mapping with VHR and multi-temporal Sentinel-2 imagery // Remote Sensing. 15 (10), DOI: 10.3390/rs15102501.
6.   Duro D. C., Franklin S. E., Dubé M. G. (2012) Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests // International Journal of Remote Sensing. Taylor and Francis. 33 (14), pp. 4502–4526. DOI: 10.1080/01431161.2011.649864.
7.   Le Hegarat-Mascle S., Vidal-Madjar D., Dinstein I. (1973) Textural features for image classification // IEEE Transactions on Systems, Man and Cybernetics. 3, pp. 610–621. DOI: 10.1109/TSMC.1973.4309314.
8.   Hay G. J., Castilla G. (2008) Geographic object-based image analysis (GEOBIA): A new name for a new discipline. Object-based image analysis: spatial concepts for knowledge-driven remote sensing applications Springer, Berlin, pp. 75–89. DOI: 10.1007/978-3-540-77058-9_4.
9.   He T., Chen J., Pan D. (2025) GOFENet: A hybrid transformer–cnn network integrating GEOBIA-based object priors for semantic segmentation of remote sensing images // Remote Sensing. 17 (15), DOI: 10.3390/rs17152652.
10.   Kim M., Madden M., Warner T. A. (2009) Forest type mapping using object-specific texture measures from multispectral Ikonos imagery // Photogrammetric Engineering and Remote Sensing. 75 (7), pp. 819–829. DOI: 10.14358/PERS.75.7.819.
11.   Kutz K., Cook Z., Linderman M. (2022) Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture // Scientific Reports. 12 (1), DOI: 10.1038/s41598-022-14757-y.
12.   Laliberte A. S., Browning D. M., Rango A. (2012) A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery // International Journal of Applied Earth Observation and Geoinformation. 15, pp. 70–78. DOI: 10.1016/j.jag.2011.05.011.
13.   Mora D., León-Sánchez C., Lizarazo I. (2022) Optimization of urban land-cover classification workflow based on geographic-object analysis using very-high-resolution imagery // DYNA. 89 (220), pp. 43–53.
14.   Morin E., Razafimbelo N. T., Yengué J.-L., Guinard Y., Grandjean F., Bech N. (2024) Mapping past land cover on Poitiers in 1993 at very high resolution using GEOBIA approach and open data // Data in Brief. 52, 109829, DOI: 10.1016/j.dib.2023.109829.
15.   Shi L., Wan Y., Gao X., Wang M. (2018) Feature selection for object-based classification of high-resolution remote sensing images based on the combination of a genetic algorithm and tabu search // Computational intelligence and neuroscience. 6595792, DOI: 10.1155/2018/6595792.
Образец цитирования:
Учаев Д.В., 
Злоников Р.Р., 
Учаев Дм.В., 
Разработка методики унифицированного описания классов компонентов земного покрова для целей объектно-ориентированной классификации аэрокосмических изображений // Геодезия и картография. – 2025. – № 12. – С. 46-55. DOI: 10.22389/0016-7126-2025-1026-12-46-55