ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Самсонов Т. Е. Мультимасштабное картографирование – новое направление картографии / Под ред. И. К. Лурье и В. И. Кравцовой.// Современная географическая картография. – М.: Дата+, – 2012. – С. 21–35. |
2. Свентэк Ю. В. Теоретические и прикладные аспекты современной картографии – М.: Эдиториал УРСС, – 1999. – 80 c. |
3. Cheng X., Liu Z., Zhang Q. (2021) MSLF: multi-scale legibility function to estimate the legible scale of individual line features // Cartography and Geographic Information Science. 48 (2), pp. 151–168. DOI: 10.1080/15230406.2020.1857307. |
4. Douglas D. H., Peucker T. K. (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature // Canadian Cartographer. 10 (2), pp. 112–122. |
5. Dubuisson M.-P., Jain A. . (1994) A modified hausdorff distance for object matching. Proceedings of 12th International Conference on pattern recognition pp. 566–568. DOI: 10.1109/ICPR.1994.576361. |
6. Dutton G. (1999) Scale, sinuosity, and point selection in digital line generalization // Cartography and Geographic Information Science. 26 (1), pp. 33–54. DOI: 10.1559/152304099782424929. |
7. Li Z., Openshaw S. (1992) Algorithms for automated line generalization based on a natural principle of objective generalization // International Journal of Geographical Information Systems. 6 (5), pp. 373–389. DOI: 10.1080/02693799208901921. |
8. Li Z., Zhai J., Wu F. (2018) Shape Similarity Assessment Method for Coastline Generalization // ISPRS International Journal of Geo-Information. 7 (7), DOI: 10.3390/ijgi7070283. |
9. Liu H., Fan Z., Zhen X., Deng M. (2011) An improved local length ratio method for curve simplification and its evaluation // International Journal of Geographical Information Science. 27, pp. 45–48. |
10. Liu P., Xiao T., Xiao J., Ai T. (2020) A multi-scale representation model of polyline based on head/tail breaks // International Journal of Geographical Information Science. 34 (11), pp. 2275–2295. DOI: 10.1080/13658816.2020.1753203. |
11. McMaster R. B. (1986) A statistical analysis of mathematical measures for linear simplification // The American Cartographer. 13 (2), pp. 103–116. DOI: 10.1559/152304086783900059. |
12. McMaster R. B. (1987) Automated line generalization // Cartographica: The International Journal for Geographic Information and Geovisualization. 24 (2), pp. 74–111. DOI: 10.3138/3535-7609-781G-4L20. |
13. Raposo P. (2013) Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation // Cartography and Geographic Information Science. 40 (5), pp. 427–443. DOI: 10.1080/15230406.2013.803707. |
14. Samsonov T. E., Yakimova O. P. (2020) Regression modeling of reduction in spatial accuracy and detail for multiple geometric line simplification procedures // International Journal of Cartography. 6 (1), pp. 47–70. DOI: 10.1080/23729333.2019.1615745. |
15. Touya G. (2021) Multi-сriteria geographic analysis for automated cartographic generalization // The Cartographic Journal. 59 (1), pp. pp 1–17. DOI: 10.1080/00087041.2020.1858608. |
16. Visvalingham M., Whyatt J. (1993) Line generalization by repeated elimination of points // Cartographic Journal. 30 (1), pp. 46–51. DOI: 10.1179/000870493786962263. |
Сравнение алгоритма на основе дескриптора Фурье с алгоритмами, опирающимися на геометрические критерии // Геодезия и картография. – 2022. – № 12. – С. 22-30. DOI: 10.22389/0016-7126-2022-990-12-22-30 |