УДК: 
DOI: 
10.22389/0016-7126-2024-1013-11-45-55
1 Злобина А.Г.
2 Рублева Е.А.
3 Журбин И.В.
Год: 
№: 
1013
Страницы: 
45-55

Удмуртский федеральный исследовательский центр Уральского отделения РАН

1, 
3, 

Удмуртский государственный университет

2, 
Аннотация:
Предложен алгоритм предварительной обработки данных тепловизионной съемки с беспилотного летательного аппарата, полученных нерадиометрической камерой с неохлаждаемым болометром. Рассмотрена проблемная ситуация при интерпретации материалов съемки. Она вызвана существенными отличиями экспозиции смежных кадров, что определяет возникновение границ сшивки при формировании сводного изображения. Кроме того, преобладающее влияние термических аномалий, связанных с природными объектами с экстремальными тепловыми свойствами (река, заболоченные участки, растительность и пр.), не позволяет выявить менее выраженные аномалии почвенных признаков культурного слоя археологического памятника. Показано, что отмеченные проблемы могут быть решены за счет предварительной обработки исходных изображений, включающей удаление шума и нормализацию яркости. Благодаря описанной фильтрации построена «бесшовная» мозаика теплового излучения участка обследования – средневекового археологического памятника Кушманское III селище. Преобразования четырех исходных снимков и построение мозаики обеспечило существенное уменьшение площади экстремально «теплых» сегментов, вызванных природными объектами с контрастными тепловыми свойствами (суммарно – от 44 до 10 %). Это позволило не только «сохранить» термические аномалии, связанные почвенными признаками культурного слоя, но и увеличить долю этих сегментов на преобразованном изображении (суммарно – от 33 до 72 %). Кроме того, на преобразованных изображениях сегменты «промежуточных» классов начинают играть самостоятельную роль. Установлено, что удаление шума и нормализация яркости исходных изображений позволяет снизить влияние природных объектов с экстремальными тепловыми свойствами и за счет этого детализировать тенденции распределения гумусированного слоя на участке археологического памятника и прилегающей территории. Результаты согласуются с данными междисциплинарных исследований (геофизика, почвенные бурения, археология), а также с ландшафтной позицией выявленных термических аномалий и материалами съемки в видимом диапазоне

Список литературы: 
1.   Иванов А. Г., Иванова М. Г., Останина Т. И., Шутова Н. И. Археологическая карта северных районов Удмуртии – Ижевск: УИИЯЛ УрО РАН, – 2004. – 276 c.
2.   Каменский А. В. Методы повышения четкости телевизионных изображений высокого качества линейными алгоритмами // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2017. – Т. 20. – № 1. – С. 46–49.
3.   Blochin J. K., Pavlovskaia E. A., Sadykov T. R., Caspari G. (2023) Remotely sensing the invisible – thermal and magnetic survey data integration for landscape archaeology // Remote Sensing. 15 (20) 4992, DOI: 10.3390/rs15204992.
4.   Brooke C., Clutterbuck B. (2020) Mapping heterogeneous buried archaeological features using multisensor data from unmanned aerial vehicles // Remote Sensing. 12 (1) 41, DOI: 10.3390/rs12010041.
5.   Calleja J. V., Pages O. R., Diaz-Alvarez N., Peon J., Gutierrez N., Martin-Hernandez E., Relea A. C., Melendi D. R., Alvarez P. F. (2018) Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data // International Journal of Applied Earth Observation and Geoinformation. 73, pp. 555–573. DOI: 10.1016/j.jag.2018.07.023.
6.   Casana J., Kantner J., Wiewel A., Cothren J. (2014) Archaeological aerial thermography: a case study at the Chaco-era Blue J community, New Mexico // Journal of Archaeological Science. 45, pp. 207–219. DOI: 10.1016/j.jas.2014.02.015.
7.   Casana J., Wiewel A., Cool A., Hill A. —., Fisher K. D., Laugier E. J. (2017) Archaeological aerial thermography in theory and practice // Advances in Archaeological Practice. 5 (4), pp. 310–327. DOI: 10.1017/aap.2017.23.
8.   Donoghue D., Beck A., Galiatzatos N., McManus K., Philip G. (2006) The use of remote sensing data for visualising and interpreting archaeological landscapes. In book: Recording, Modeling and Visualization of Cultural Heritage / Baltsavias E., Gruen A., Van Gool L., Pateraki M. (Eds.). Taylor and Francis Group, London, pp. 317–326.
9.   Hill A. C., Laugier E. J., Casana J. (2020) Archaeological remote sensing using multi-temporal, drone acquired thermal and near infrared (NIR) imagery: a case study at the Enfield Shaker Village, New Hampshire // Remote Sensing. 12 (4) 690, DOI: 10.3390/rs12040690.
10.   Lasaponara R., Masini N. (2012) Remote sensing in archaeology: from visual data interpretation to digital data manipulation. In book: Satellite Remote Sensing: A New Tool for Archaeology (Remote Sensing and Digital Image Processing, vol. 16) / Lasaponara, R., Masini, N. (Eds.). Springer, Dordrecht, pp. 3–16. DOI: 10.1007/978-90-481-8801-7_1.
11.   Lasaponara R., Masini N., Holmgren R., Backe Forsberg Y. (2012) Integration of aerial and satellite remote sensing for archaeological investigations: A case study of the Etruscan site of San Giovenale // Journal of Geophysics and Engineering. 9 (4), pp. S26–S39. DOI: 10.1088/1742-2132/9/4/S26.
12.   Liu D., Song K., Townshend J. R. G., Gong P. (2008) Using local transition probability models in Markov random fields for forest change detection // Remote Sensing of Environment. 112 (5), pp. 2222–2231. DOI: 10.1016/j.rse.2007.10.002.
13.   Luo L., Wang X., Guo H., Lasaponara R., Zong X., Masini N., Wang G., Shi P., Khatteli H., Chen F., Tariq Sh., Shao J., Bachagha N., Yang R., Yao Y. (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017) // Remote Sensing of Environment. 232, pp. 111280. DOI: 10.1016/j.rse.2019.111280.
14.   McLeester M., Casana J., Schurr M. R., Hill A. C., Wheeler J. H. (2018) Detecting prehistoric landscape features using thermal, multispectral, and historical imagery analysis at Midewin National Tallgrass Prairie, Illinois // Journal of Archaeological Science: Reports. 21, pp. 450–459. DOI: 10.1016/j.jasrep.2018.08.016.
15.   Parisi E. I., Suma M., Korumaz A. G., Rosina E., Tucc G. (2019) Aerial platforms (UAV) surveys in the VIS and TIR range. Applications on archaeology and agriculture // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W11, pp. 945–952. DOI: 10.5194/isprs-archives-XLII-2-W11-945-2019.
16.   Perisset M. C., Tabbagh A. (1981) Interpretation of thermal prospection on bare soils // Archaeometry. 23 (2), pp. 169–187. DOI: 10.1111/j.1475-4754.1981.tb00304.x.
17.   Scollar I., Tabbagh A., Hesse A., Herzog I. (1990) Archaeological prospecting and remote sensing // American Antiquity. 58 (3), pp. 602–602. DOI: 10.2307/282134.
18.   Scudero S., Martorana R., Capizzi P., Pisciotta A., D'Alessandro A., Bottari C., Di Stefano G. (2018) Integrated geophysical investigations at the Greek Kamarina Site (Southern Sicily, Italy) // Surveys in Geophysics. 39, pp. 1181–1200. DOI: 10.1007/s10712-018-9483-1.
19.   Sedina J., Housarova E., Raeva P. (2019) Using RPAS for the detection of archaeological objects using multispectral and thermal imaging // European Journal of Remote Sensing. 52 (sup1), pp. 182–191. DOI: 10.1080/22797254.2018.1562848.
20.   Waagen J., Sanchez J. G., Van Der Heiden M., Kuiters A., Lulof P. (2022) In the heat of the night: Comparative assessment of drone thermography at the archaeological sites of Acquarossa, Italy, and Siegerswoude, The Netherlands // Drones. 6 (7) 165, DOI: 10.3390/drones6070165.
21.   Wang Z., Bovik A.C., Sheikh H. R., Simoncelli E. P. (2004) Image quality assessment: from error visibility to structural similarity // IEEE Transactions on Image Processing. 13, 4, pp. 600-612. DOI: 10.1109/TIP.2003.819861.
22.   Zhurbin I. V., Borisov A. V., Nazmutdinova A. I., Milich V. N., Petrov R. P., Ivanova M. G., Modin R. N., Knyazeva L. F., Vorobieva N. G., Zinchuk S. V. (2019) The use of remote sensing, geophysical methods and soil analysis in the study of sites disturbed by agricultural activity // Archaeology, Ethnology and Anthropology of Eurasia. 47 (2), pp. 103–111. DOI: 10.17746/1563-0110.2019.47.2.103-111.
Образец цитирования:
Злобина А.Г., 
Рублева Е.А., 
Журбин И.В., 
Фильтрация изображений при построении мозаики тепловизионных снимков археологических памятников // Геодезия и картография. – 2024. – № 11. – С. 45-55. DOI: 10.22389/0016-7126-2024-1013-11-45-55