UDC: 
DOI: 
10.22389/0016-7126-2021-978-12-2-11
1 Kornilov Yu.N.
2 Tsareva O.S.
3 Shevchenko A.S.
Year: 
№: 
978
Pages: 
2-11

Saint-Petersburg Mining University

1, 

Peter the Great Saint-Petersburg Polytechnic University

2, 

Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

3, 
Abstract:
The authors present the assessment of determining the deformation marks’ coordinates accuracy at constructing a network in the form of a linear spatial intersection. Using the distance between the control points and deformation marks; their coordinates are defined. The root- and general mean-square errors in determining the coordinates arising from the faults in measuring the lengths and depending on the shape of the spatial intersection are calculated. Computational mistakes enable assessing the possibility of obtaining the desired results at designing a network of deformation marks with an accuracy that meets the requirements of regulatory documents, and taking the expected accuracy of linear measurements into account. Selecting the marks is shown by the example of an elementary model. Two computer programs for that purpose were developed. The convergence of the results obtained in the course of the programs and theoretical modeling indicates the correct operation of the software. The developed algorithm and pro-grams enable optimizing the location of deformation marks at designing a network.
The work was financially supported by the Government of St.Petersburg, the Committee on Science and High School on the “Development of methodology for assessment the deformations of buildings of cultural heritage monuments”.
References: 
1.   Mustafin M.G., Nguyen Huu Viet (2019) The Estimation of the Building’s Vertical Shifts and Construction Groundworks on the Basis of Deformation Network Element Analysis. Geodezia i Kartografia, 80(3), pp. 11-19. (In Russian). DOI: 10.22389/0016-7126-2019-945-3-11-19.
2.   Nikonov A. V., Murzintsev P. P. Opredelenie deformatsii karkasa glavnogo korpusa GRES. Interekspo Geo-Sibir', 2017, Vol. 1, pp. 10–16.
3.   Pimshin Yu. I., Zayarov Yu. V., Naumenko G. A. Printsip rascheta tochnosti izmerenii pri vypolnenii kontrolya deformatsionnykh protsessov. Global'naya yadernaya bezopasnost', 2019, no. 1 (30), pp. 59–66.
4.   Hatoum H.M, Mustafin M.G. (2020) Optimization of locating robotic total stations for determining the deformations of buildings and structures . Geodezia i Kartografia, 81(9), pp. 2-13. (In Russian). DOI: 10.22389/0016-7126-2020-963-9-2-13.
5.   Tsareva O. S., Dmitriev I. I. Opredelenie deformatsii po izmeneniyam rasstoyanii Westpark (g. Bokhum). URL: https://week-science.spbstu.ru/userfiles/volumes/78/file.pdf (accessed: 01.12.2020).
6.   Shevchenko A. S. Razrabotka programmnogo modulya analiza geodezicheskikh nablyudenii za deformatsiyami zdanii i sooruzhenii. SPb, 2019, 124 p. DOI: 10.18720/SPBPU/3/2019/vr/vr19-893.
7.   Shehovtsov G. A. Edinyj algoritm uravnivaniya, otsenki tochnosti i optimizatsii geodezicheskih zasechek: Monografiya. N. Novgorod: izd. NNGASU, 2017, 123 p.
8.   Mustafin M. G., Kazantsev A. I., Volkov V. A. (2017) Monitoring of deformation processes in buildings and structures in metropolises. Procedia Engineering, no. 189, pp. 729–736. DOI: 10.1016/j.proeng.2017.05.115.
9.   Scaioni M., Marsella M., Crosetto M., Tornatore V., Wang J. (2018) Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors (Switzerland), no. 18 (11), DOI: 10.3390/s18113682.
10.   Zhou J., Shi B., Liu G., Ju S. (2021) Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station. PLoS ONE. no. 16 (5): e0251281, DOI: 10.1371/journal.pone.0251281.
Citation:
Kornilov Yu.N., 
Tsareva O.S., 
Shevchenko A.S., 
(2021) Optimization of deformation marks location at building a network in the form of a linear spatial intersection. Geodesy and cartography = Geodezia i Kartografia, 82(12), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2021-978-12-2-11