DOI: 
10.22389/0016-7126-2021-967-1-45-55
1 Bezmenov V.M.
2 Safin K.I.
Year: 
№: 
967
Pages: 
45-55

Kazan Federal University

1, 
2, 
Abstract:
The authors present the results of numerical experiments aimed to determine the mean square error, which can be used to obtain the spatial coordinates of the object’s under study points through processing images obtained from UAVs using only on-Board global satellite and inertial navigation equipment on drones. At those experiments, aerial photography from the UAVs was modeled for mapping and solving the engineering task of creating a three-dimensional building (structure) model. A pair of images was simulated for the research. The results using the characteristics of the GNSS inertial solutions Trimble АРХ-15 UAV and Trimble АРХ-20 UAV are presented. The experiments show that at solving engineering tasks under conditions corresponding to an arbitrary case of aerial photography, in order to determinie the spatial coordinates with the mean square error not more than 15 mm, the same error of determining the linear elements of external orientation should be 2–5 mm, and the angular elements 10–20ʺ. This significantly exceeds the characteristics corresponding to the post-processing mode for the specified GNSS-inertial solutions. The authors show the effect of angular elements’ external orientation errors to resulting the mean square error of each coordinate and a possible approach to reducing it.
References: 
1.   Bezmenov V. M., Safin K. I. Otsenka tochnosti pryamoi fotogrammetricheskoi zasechki dlya proizvol'nogo sluchaya s"emki raznymi kamerami. Izv. vuzov. Geodeziya i aerofotos"emka, 2020, Vol. 64, no. 4, pp. 415–422. DOI: 10.30533/0536-101X-2020-64-4-415-422.
2.   Blyakharskii D. P., Ishalina O. T., Tyurin S. V. Deshifrirovanie skrytykh lednikovykh treshchin po materialam bespilotnoi aerofotos"emki v raione stantsii Progress (Vostochnaya Antarktida). Izv. vuzov. Geodeziya i aerofotos"emka, 2020, Vol. 64, no. 1, pp. 45–53. DOI: 10.30533/0536-101X-2020-64-1-45-53.
3.   Vorob'eva N. G., Zhurbin I. V., Knyazeva L. F. Issledovanie vozmozhnostei BPLA Supercam S350-F v zadachakh izucheniya i sokhraneniya arkheologicheskogo naslediya. Izv. vuzov. Geodeziya i aerofotos"emka, 2016, Vol. 60, no. 2, pp. 83–90.
4.   Kadnichanskiy S.A., Kurkov M.V., Kurkov V.M., Chibunichev Aleksandr (2020) Certification testing hardware-and-software complex based on unmanned aerial vehicle “Geoscan 401”. Geodezia i Kartografia, 81(3), pp. 32-38. (In Russian). DOI: 10.22389/0016-7126-2020-957-3-32-38.
5.   Kurkov V. M., Peres Val’dez Manuel’ de Khesus, Blyakharskii D. P. Sozdanie trekhmernykh modelei ob”ektov pamyatnikov istoricheskogo i kul’turnogo naslediya s ispol’zovaniem bespilotnykh letatel’nykh apparatov samoletnogo i mul’tirotornogo tipov. Izvestiya vysshikh uchebnykh zavedenii. Geodeziya i aerofotos”emka, 2016, Vol. 60, no. 2, pp. 94–99.
6.   Lobanov A.N. Fotogrammetriya. M.: Nedra, 1984, 552 p.
7.   Radchenko E. S. Vysotnoe obsledovanie dymovykh trub s ispol'zovaniem bespilotnika. Vestnik promyshlennosti, biznesa i finansov, 2019, no. 6(54), pp. 76–78.
8.   Sposob opredeleniya prostranstvennykh koordinat i uglovogo polozheniya udalennogo ob"ekta: Pat. 2681836 Ros. Federatsiya № 2018105378; zayavl. 13.02.2018; opubl. 13.03.2019, Byul. № 8. 39 p.
9.   Fetisov V. S., Neugodnikova L. M., Adamovskii V. V., Krasnoperov R. A. Bespilotnaya aviatsiya: terminologiya, klassifi katsii, sovremennoe sostoyanie. Ufa: Foton, 2014, 217 p.
10.   Khlebnikova T. A., Yambaev Kh. S., Opritova O. A. Razrabotka tekhnologicheskoi skhemy sbora i obrabotki dannykh aerofotos"emki s ispol'zovaniem bespilotnykh aviatsionnykh sistem dlya modelirovaniya geoprostranstva. Vestnik SGUGiT, 2020, Vol. 25, no. 1, pp. 106–118. DOI: 10.33764/2411-1759-2020-25-1-106-118.
11.   Tsifrovye kamery dlya bespilotnykh aviatsionnykh sistem «Ptero». URL: https://clck.ru/SYr7d (accessed: 21.09.2020).
12.   APX-15 UAV version 3, single board inertial solution datasheet. URL: clck.ru/SYs8B (accessed: 23.10.2018).
13.   Consumer Drone Shipments to Exceed 90 Million Units and Generate $4.6 Billion in Revenue by 2025. URL: clck.ru/SYrwy (accessed: 21.10.2018).
14.   Mian O., Lutes J., Lipa G., Hutton J. J., Gavelle E., Borghini S. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. URL: clck.ru/SYsKn (accessed: 15.10.2018).
15.   2017 Drone Market. Sector Report. Prospectus. URL: clck.ru/SYs4F (accessed: 21.10.2018).
Citation:
Bezmenov V.M., 
Safin K.I., 
(2021) Researching the accuracy of determining spatial coordinates through processing images from drones. Geodesy and cartography = Geodezia i Kartografia, 82(1), pp. 45-55. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-45-55
Publication History
Received: 21.01.2020
Accepted: 15.10.2020
Published: 20.02.2021

Content

2021 January DOI:
10.22389/0016-7126-2021-967-1