UDC: 
DOI: 
10.22389/0016-7126-2021-974-8-2-12
1 Sharafutdinova A.A.
2 Bryn M.Ya.
Year: 
№: 
974
Pages: 
2-12

Petersburg State Transport University

1, 
2, 
Abstract:
Terrestrial laser scanning and digital information modeling are increasingly practiced every year to solve application tasks at various stages of the industrial facility’s life cycle. In this regard, the task of formulating the requirements for the accuracy of performing terrestrial laser scanning for the subsequent forming digital information models becomes more and more calling. In this article we analyzed the types of engineering and geodetic works by which engineering tasks are solved at various stages of the industrial facility’s life cycle in order to create an accuracy requirement. An analysis of the regulatory and technical documentation that specifies doing these works was also made. Basing on it, the relationship between the measurement accuracy characteristics specified in the regulatory and technical documentation (design, construction and operational) and the mean square errors in determining the position of points is described. The authors propose a scheme for transition from the characteristics of the measurements accuracy to the mean square errors of determining the position of points for each type of engineering and geodetic work. The results of this study can be used at planning terrestrial laser scanning of industrial facilities. Basing on the above requirements for the accuracy of the geodetic work, it is possible to formulate a methodology for carrying out each stage of the TLS technological scheme.
References: 
1.   Avakyan V. V. Prikladnaya geodeziya: tekhnologii inzhenerno-geodezicheskikh rabot. – 2-e izd. Moskva: Infra- Inzheneriya, 2016, 588 p.
2.   Zajcev A.K., Marfenko S.V., Mihelev D.Sh., Vasyutinskij I.Yu., Klyushin E.B., Ivanov M.V., Yambaev X.K. Geodezicheskie metody issledovaniya deformacij sooruzhenij. M.: Nedra, 1991, 271 p.
3.   Zhukov B.N. Rukovodstvo po geodezicheskomu kontrolyu sooruzhenii i oborudovaniya promyshlennykh predpriyatii pri ikh ekspluatatsii. Novosibirsk: izd. SGGA, 2004, 376 p.
4.   Koleda C. A. Tekhnologiya informatsionnogo modelirovaniya (BIM) v KREDO. Geoprofi, 2019, no. 1, pp. 20–23.
5.   Kougiya V. A., Gruzinov V. V., Malkovskii O. N., Petrov V. D. Geodezicheskie raboty pri stroitel'stve mostov. Pod red. V. A. Kougiya. Moskva: Nedra, 1986, 247 p.
6.   Kuznetsova A.A. (2018) Using laser scanning to detect deviations of structures from their design values. Geodezia i Kartografia, 79(12), pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2018-942-12-2-7.
7.   Levchuk G. P., Novak V. E., Konusov V. G. Prikladnaya geodeziya. Osnovnye metody i printsipy inzhenerno-geodezicheskikh rabot: Ucheb. posobie. Moskva: Nedra, 1981, 446 p.
8.   Nikitin V. M., Platonov S. A., Baun I. V Skhemy operatsionnogo kontrolya kachestva stroitel’nykh, remontnostroitel’nykh i montazhnykh rabot. Sankt-Peterburg: SPb otdelenie OOF “TsKS”, 2011, 236 p.
9.   Skvortsov A. V. Obzor mezhdunarodnoi normativnoi bazy v sfere BIM. SAPR i GIS avtomobil'nykh dorog, 2016, no. 2 (7), pp. 4–48. DOI: 10.17273/CADGIS.2016.2.1.
10.   Mustafin M. G., Shoker Ch. M. Otsenka vliyaniya lineino-uglovykh parametrov lazerno-skaniruyushchei s"emki na tochnost' postroeniya modeli ob"ekta. Marksheiderskii vestnik, 2020, no. 6 (139), pp. 42–50.
11.   Sharafutdinova A. A., Bryn' M. Ya. Opyt primeneniya nazemnogo lazernogo skanirovaniya i informatsionnogo modelirovaniya dlya upravleniya inzhenernymi dannymi v techenie zhiznennogo tsikla promyshlennogo ob"ekta. Vestnik SGUGiT, 2021, Vol. 26, no. 1, pp. 57–67. DOI: 10.33764/2411-1759-2021-26-1-57-67.
12.   Shul'ts R. V. Nazemnoe lazernoe skanirovanie v zadachakh inzhenernoi geodezii. Kishinev: Palmarium Academic Publishing, 2013, 348 p.
13.   Lindskog E. (2016) Layout planning and geometry analysis using 3D laser scanning in production system redesign. 6th CIRP Conference on Assembly Technologies and Systems (CATS).Procedia CIRP, no. 44, pp. 126–131. DOI: 10.1016/j.procir.2016.02.118.
14.   Nguyen C. H. P., Choi Y. (2018) Comparison of point cloud data and 3D CAD data for on-site dimensional T inspection of industrial plant piping systems. Automation in Construction, no. 91, pp. 44–52. DOI: 10.1016/j.autcon.2018.03.008.
15.   Ochmann S., Vock R., Klein R. (2019) Automatic reconstruction of fully volumetric 3D building models from oriented point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, no. 151, pp. 251–262. DOI: 10.1016/j.isprsjprs.2019.03.017.
16.   Romero-Jarén R., Arranz J. J. (2021) Automatic segmentation and classification of BIM elements from point clouds. Automation in Construction, no. 124, pp. 1–21. DOI: 10.1016/j.autcon.2021.103576.
17.   Son, H., Kim, C., Kim, C. (2015) 3D reconstruction of as-built industrial instrumentation models from laser-scan data and a 3D CAD database based on prior knowledge. Automation in Construction, no. 49, pp. 193–200. DOI: 10.1016/j.autcon.2014.08.007.
18.   Wang B., Yin C., Luo Cheng J. C. P., Wang Q. H. (2021) Fully automated generation of parametric BIM for MEP scenes based on terrestrial laser scanning data. Automation in Construction, no. 125, pp. 1–21. DOI: 10.1016/j.autcon.2021.103615.
Citation:
Sharafutdinova A.A., 
Bryn M.Ya., 
(2021) On the accuracy requirements of terrestrial laser scanning for solving engineering and geodetic tasks using BIM . Geodesy and cartography = Geodezia i Kartografia, 82(8), pp. 2-12. (In Russian). DOI: 10.22389/0016-7126-2021-974-8-2-12
Publication History
Received: 28.01.2021
Accepted: 01.07.2021
Published: 20.09.2021

Content

2021 August DOI:
10.22389/0016-7126-2021-974-8