DOI: 
10.22389/0016-7126-2023-1002-12-10-16
1 Popadyev V.V.
Year: 
№: 
1002
Pages: 
10-16

Roskadastr, PLC

1, 
Abstract:
The latest implementation of the international global coordinate system ITRF2020 enables taking into account not only linear time parameters of points’ coordinates changes participating in its construction, but also periodic terms reflecting their seasonal (intra-annual) variation, as well as post-seismic effects in tectonically active areas. These shifts for control points are not only caused by the actual physical movement of the point itself relative to neighboring ones or together with them on the tectonic plate. It also includes the influence of joint processing: the mentioned changes may contain common periodic terms distributed even among points that do not have real intra-annual variations. In this study, a harmonic analysis of the velocity field’s horizontal components in the ITRF2020 coordinate system was performed, the expansion was made in terms of spherical functions from the degree of 0 to that of 360; smoothed global features of the velocity field are obtained by summing only up to the level of 5 and 10. Although the use of expansion in terms of spherical functions is a methodologically more correct tool for interpolating fields on the surface of bodies close to a sphere, the rates of change by their nature are a discontinuous function and their harmonic analysis is difficult
The research was done within the framework of the Research work: “GEOKARTA-2030”
References: 
1.   Vityazev V. V. Analiz astrometricheskikh katalogov s pomoshch'yu sfericheskikh funktsii. SPb.: Izd-vo S.-Peterb. gos. un-ta, 2017, 224 p.
2.   Natsional'nyi doklad dlya Mezhdunarodnoi assotsiatsii geodezii Mezhdunarodnogo geodezicheskogo i geofizicheskogo soyuza 2019–2022 gg. Pod red. V. P. Savinykh, V. I. Kaftana.Issledovaniya po geoinformatike: trudy Geofizicheskogo tsentra RAN, 2023, Vol. 11, no. 1, 69 p. DOI: 10.2205/2023IUGG-RU-IAG.
3.   Chuikova N. A., Maksimova T. G., Chesnokova T. S., Grushinskii A. N. Vertikal'nye dvizheniya poverkhnosti zemnoi kory po dannym ITRF2000, ITRF2005, ITRF2008, ITRF2014 i ikh sravnitel'nyi analiz. Astronomiya, geodeziya i geofizika: Sbornik, Moskva: TsGKiIPD, 2018, pp. 139–228.
4.   Chuikova N. A., Nasonova L. P., Maksimova T. G. Anomalii plotnosti, napryazhenii i gravitatsionnogo polya vnutri Zemli i Marsa i vozmozhnye geodinamicheskie sledstviya: sravnitel'nyi analiz. Fizika Zemli, 2014, no. 3, pp. 127–143. DOI: 10.7868/S0002333714030016.
5.   Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K. (2023) ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions. Journal of Geodesy, no. 97 (47), 22 p. DOI: 10.1007/s00190-023-01738-w.
6.   Chujkova N.A., Nasonova L.P., Maximova T.G. (2015) The New Method to Find the Anomalous Internal Structure of Terrestrial Planets and Its Test on the Earth. IGFS 2014. International Association of Geodesy Symposia, Springer, pp. 209–214. DOI: 10.1007/1345_2015_195.
7.   Gvishiani A. D., Tatarinov V. N., Kaftan V. I., Manevich A. I., Dzeboev B. A., Losev I. V. (2020) The Velocities of Modern Horizontal Movements of Earth Crust in the South Sector of Yenisei Ridge According to GNSS Observations. Doklady Earth Sciences, no. 493 (1), pp. 544–547. DOI: 10.1134/S1028334X20070077.
8.   Hosseini K., Matthews K. J., Sigloch K., Shephard G. E., Domeier M., Tsekhmistrenko M. (2018) SubMachine: web-based tools for exploring seismic tomography and other models of EarthТs deep interior. Geochemistry, Geophysics, Geosystems, no. 19 (5), pp. 1464–1483. DOI: 10.1029/2018GC007431.
9.   Manevich A., Kaftan V., Shevchyk R., Urmanov D. (2021) Modelling the horizontal velocity field of the Nizhne-Kansk massif according to GNSS Observations. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, no. 1, pp. 162–169. DOI: 10.17770/etr2021vol1.6545.
10.   Meng G., Su X., Wu W., Shestakov N., Takahashi H., Ohzono M., Gerasimenko M. (2019) Crustal Deformation of Northeastern China Following the 2011 Mw 9.0 Tohoku, Japan Earthquake Estimated from GPS Observations: Strain Heterogeneity and Seismicity. Remote Sensing, no. 11 (24), pp. 3029. DOI: 10.3390/rs11243029.
11.   Mikhailov V. O., Timoshkina E. P., Smirnov V. B., Khairetdinov S. A., Dmitriev P. N. (2020) On the Origin of Postseismic Deformation Processes in the Region of the Maule, Chile Earthquake of February 27, 2010. Izvestiya Physics of the Solid Earth, no. 56 (6), pp. 762–771. DOI: 10.1134/S106935132006004X.
12.   Weis D., Harpp K. S., Harrison L. N. et al. (2023) Earth's mantle composition revealed by mantle plumes. Nature Reviews Earth and Environment, no. 4 (9), pp. 604–625. DOI: 10.1038/s43017-023-00467-0.
13.   Yu Ji-peng, Meng G., Su X., Shestakov N., Gerasimenko M., Takahashi H., Ohzono M., Liu Tai, Li Cheng-tao (2019) Crustal Deformation of Northeast China Deduced from GPS Observations. Earthquake, Volume 39, no. 3, pp. 11–27.
14.   Yuan Q., Li M., Desch S. J. et al. (2023) Moon-forming impactor as a source of Earth's basal mantle anomalies. Nature, no. 623 (7985), pp. 95–99. DOI: 10.1038/s41586-023-06589-1.
Citation:
Popadyev V.V., 
(2023) Harmonic analysis of the earth`s surface points` horizontal movements in the ITRF. Geodesy and cartography = Geodezia i Kartografia, 84(12), pp. 10-16. (In Russian). DOI: 10.22389/0016-7126-2023-1002-12-10-16
Publication History
Received: 15.12.2023
Accepted: 15.01.2024
Published: 25.01.2024

Content

2023 December DOI:
10.22389/0016-7126-2023-1002-12