UDC: 
DOI: 
10.22389/0016-7126-2023-997-7-14-23
1 Mareev A.V.
Year: 
№: 
997
Pages: 
14-23

Siberian State University of Geosystems and Technologies

1, 
Abstract:
For transition from the coordinate system CS-42 to the Earth-centered, Earth-fixed SCS-2011, correct transformation models are required. Such a model is a non-linear transformation of coordinate systems via the grid shift method. The Data Grid of transformation parameters from CS-42, CS-95 to SCS-2011 were developed in 2016 at the Federal Scientific and Technical Center of Geodesy, Cartography and Spatial Data Infrastructure and are called deformation matrices of CS-95 (CS-42). The accuracy of coordinate transformation is declared as 10 cm for areas with a high density of state geodetic network points. The author presents the results of the deformation matrix analysis for the Republic of Bashkortostan. Evaluation of errors in it due to violation of the mesh irregularity is presented. Recommendations for improving the model are given
The study was funded by the project "Development and investigation of breakthrough technologies in the field of physical and relativistic geodesy for fundamental support of the GLONASS system", "GEOTECH-Kvant". Reg. No. 121111600209-4.
References: 
1.   Afonin K. F., Afonin F. K. Tekhnologii preobrazovaniya ploskikh pryamougol'nykh koordinat Gaussa – Kryugera v SK NSO. Vestnik of SSUGT, 2013, Vol. 1, no. 1, pp. 7–11.
2.   Gerasimov A. P. Zolotoi klyuchik: kak stat' (ili ne stat') Buratino i reshit' problemu perekhoda ot SK-42 i WGS-84 k SK-63 i mestnym sistemam koordinat. Geoprofi, 2010, no. 3, pp. 24–31.
3.   Demyanov G.V., Mayorov A.N., Pobedinskiy G.G. (2011) Geodetic coordinate systems and their development through global navigation satellite systems application. Geodezia i Kartografia, 72(6), pp. 7-11.
4.   Efimov G. N., Zubinskii V. I., Popad'ev V. V. Ob"yasnenie k geodezicheskoi sisteme koordinat 2011 goda. Moskva: TsGKiIPD, 2019, 165 p.
5.   Kalitkin N.N. Chislennye metody: uchebnoe posobie. – 2-e izdanie, ispravlennoe. SPb: BKhV-Peterburg, 2011, 592 p.
6.   Obidenko V. I. Edinoe vysokotochnoe gomogennoe koordinatnoe prostranstvo territorii i mestnye sistemy koordinat: puti garmonizatsii. Vestnik of SSUGT, 2020, Vol. 25, no. 2, pp. 46–62. DOI: 10.33764/2411-1759-2020-25-2-46-62.
7.   Shendrik N. K. Metodika opredeleniya soglasuyushchikh parametrov Gel'merta dlya lokal'nykh territorii. Vestnik of SSUGT, 2021, Vol. 26, no. 5, pp. 63–74. DOI: 10.33764/2411-1759-2021-26-5-63-74.
8.   Estey L. H., Meertens C. M. (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, Volume 3, no. 1, pp. 42–49. DOI: 10.1007/PL00012778.
9.   Garnero G. (2014) Use of NTv2 transformation grids in engineering applications. Earth Science Informatics, no. 7, pp. 139–145. DOI: 10.1007/s12145-013-0135-1.
10.   Li X., Zhang X., Ren X., Fritsche M., Wickert J., Schuh H. (2015) Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, Volume 5, no. 1, DOI: 10.1038/srep08328.
11.   (2016) RTCM special committee Nо. 104. Differential GNSS (Global navigation satellite systems) services – version 3. Radio Technical Commission for Maritime Services. 276 p.
12.   Vaclavovic P., Dousa J. (2015) G-Nut/Anubis: Open-Source Tool for Multi-GNSS Data Monitoring with a Multipath Detection for New Signals, Frequencies and Constellations. International Association of Geodesy Symposia book series (IAG SYMPOSIA), no. 143, pp. 775–782. DOI: 10.1007/1345_2015_97.
Citation:
Mareev A.V., 
(2023) Investigation results of deformation matrixes for the CS-42 coordinate system. Geodesy and cartography = Geodezia i Kartografia, 84(7), pp. 14-23. (In Russian). DOI: 10.22389/0016-7126-2023-997-7-14-23
Publication History
Received: 15.03.2023
Accepted: 28.07.2023
Published: 20.08.2023

Content

2023 July DOI:
10.22389/0016-7126-2023-997-7