DOI: 
10.22389/0016-7126-2024-1011-9-25-32
1 Shcherbakov V.M.
2 Skrypitsyna T.N.
3 Ukolova A.V.
Year: 
№: 
1011
Pages: 
25-32

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
2, 
3, 
Abstract:
The authors present a new approach to mapping hard-to-reach caves. It relies on a modern framework of ground-based stereo photogrammetric and geodetic surveying, aerial photography from UAVs and computer modelling. A stereo system was designed and assembled, consisting of two GoProHero9 Black cameras and a powerful artificial light source with diffusing lens, mounted on the operator`s helmet. The site for underground filming was the Syanovskaya quarry (Moscow oblast, Domodedovo rayon). The aerial survey of the cave ground part was also made with DJIAir 2S UAV; it included a ravine with a concrete well, which was the entrance to the quarry. The article deals with the processes of geodetic georeferencing, external orientation of the surface model and underground parts of the cave, as well as the cartographic materials obtained in the course of the work: plan, section-cutting, longitudinal and cross sections, as well as orthophoto of the surface part of the quarry with the underground cavity combined on it. The results of the study enable asserting that the developed technology of cave mapping based on the results of photogrammetric stereo survey is applicable to hard-to-access underground objects, as well as its integration and implementation with already existing classical works and instrumental surveying is possible
References: 
1.   Globa K. N., Bogomaz M. V. Trekhmernoe modelirovanie karstovogo massiva Kungurskoi ledyanoi peshchery i ledyanoi gory. Izuchenie i ispol'zovanie estestvennykh i iskusstvennykh podzemnykh prostranstv i zakarstovannykh territorii: materialy Vserossiiskoi nauch.-prakt. konf, 2018, pp. 35–39.
2.   Leonov A. V., Anikushkin M. N., Bobkov A. E., Rys' I. V., Kozlikin M. B., Shun'kov M. V., Derevyanko A. P., Baturin Yu. M. Sozdanie virtual'noi 3D-modeli Denisovoi peshchery. Arkheologiya, etnografiya i antropologiya Evrazii, 2014, Vol. 59, no. 3, pp. 14–20.
3.   Nekhodtsev V. A., Garshin D. I. Golotsenovyi travertinogenez i tufovye peshchery u Dulebino (Moskovskaya oblast'). Speleologiya i spelestologiya, 2021, no. 2, pp. 12–19.
4.   Pakhunov A. S. Pervye rezul'taty sploshnoi dokumentatsii sten Kapovoi peshchery s posleduyushchei fotogrammetricheskoi obrabotkoi. Problemy istorii, filologii, kul'tury, 2017, no. 3, pp. 200–209.
5.   Svoiskii Yu. M., Romanenko E. V., Grigor'ev N. N., Levanova E. S. Opyt dokumentirovaniya peshchery Shul'gan-Tash (Kapovoi) i okruzhayushchego landshafta sovremennymi metodami. Kratkie soobshcheniya Instituta arkheologii, 2020, 261. pp. 67–81. DOI: 10.25681/IARAS.0130-2620.261.67-81.
6.   Shcherbakov V. M., Ukolova A. V., Skrypitsyna T. N., Fal'kov D. D. Trekhmernoe modelirovanie S'yanovskoi kamenolomni metodom fotogrammetrii. Speleologiya i spelestologiya, 2023, no. 1, pp. 47–52.
7.   Ajayi O. G., Ogundele B. S., Aleji G. A. (2023) Performance evaluation of different selected UAV image processing software on building volume estimation. Advances in geodesy and geoinformation, no. 72 (1), pp. 1–17. DOI: 10.24425/agg.2023.144591.
8.   De Waele J., Fabbri S., Santagata T., Chiarini V., Columbu A., Pisani L. (2018) Geomorphological and speleogenetical observations using terrestrial laser scanning and 3D photogrammetry in a gypsum cave (Emilia Romagna, N. Italy). Geomorphology, no. 319, pp. 47–61. DOI: 10.1016/j.geomorph.2018.07.012.
9.   Ferreira C., Hussain Y., Uagoda R., Silva T., Cicerelli R. (2023) UAV-based doline mapping in Brazilian karst: A cave heritage protection reconnaissance. Open Geosciences, no. 15 (1), pp. 1–18. DOI: 10.1515/geo-2022-0535.
10.   Fryer J. G., Chandler J. H., El-hakim S. F. (2005) Recording and modelling an aboriginal cave painting: with or without laser scanning. International Society for Photogrammetry and Remote Sensing, no. 5 (17), pp. 1–8.
11.   Gallay M., Hochmuth Z., Kaňuk J., Hofierka J. (2016) Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning. Hydrology and Earth System Sciences, no. 20 (5), pp. 1827–1849. DOI: 10.5194/hess-20-1827-2016.
12.   Gunn J. (2004) Speleogenesis theories: early. Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp. 669–670.
13.   Gunn J. (2004) Speleologist. Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp. 686–689.
14.   Martinucci D., Pillon S., Bezzi A., Casagrande G., Fontolan G., Potleca M., Bieker F., Bratus A., Manca P., Blanos R., Paganini P. (2020) Integration of point clouds from UAV photogrammetry and laserscan survey for the assessment of the risk of collapse of the vault of an underground cavity EGU General Assembly 2020, EGU2020-7669.
15.   Ortiz-Coder P., Sánchez-Ríos A. (2020) An integrated solution for 3D heritage modeling based on videogrammetry and V-SLAM technology. Remote Sensing, no. 12 (9): 1529, DOI: 10.3390/rs12091529.
16.   Sammartano G., Spanò A., Teppati Losè L. (2019) A fusion-based workflow for turning slam point clouds and fisheye data into texture-enhanced 3d models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. 2 (17), pp. 295–302. DOI: 10.5194/isprs-archives-XLII-2-W17-295-2019.
17.   Tsakiri M., Sigizis K., Billiris H., Dogouris S. (2007) 3D laser scanning for the documentation of cave environments. In: 11th ACUUS Conference: Underground Space, Expanding the Frontiers, no. 1, pp. 403–408.
Citation:
Shcherbakov V.M., 
Skrypitsyna T.N., 
Ukolova A.V., 
(2024) Mapping caves due to photogrammetric data. Geodesy and cartography = Geodezia i Kartografia, 85(9), pp. 25-32. (In Russian). DOI: 10.22389/0016-7126-2024-1011-9-25-32