ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
| 1. Avrunev E. I. Razrabotka sistemy normativnykh dopuskov pri sozdanii geodezicheskogo obosnovaniya dlya vypolneniya kadastrovykh rabot v formate 3D. Izvestia vuzov. Geodesy and Aerophotosurveying, 2023, Vol. 67, no. 3, pp. 16–26. |
| 2. Avrunev E. I., Gorobtsov S. R. Geodezicheskoe obespechenie kadastrovykh rabot. Novosibirsk: SGUGiT, 2024, 239 p. |
| 3. Gura D. A. Gradostroitel'noe zonirovanie v zadache informatsionnogo obespecheniya kadastrovykh rabot na zemlyakh naselennykh punktov. Vestnik SSUGT, 2024, Vol. 29, no. 5, pp. 137–147. DOI: 10.33764/2411-1759-2024-29-5-137-147. |
| 4. Gura D. A., Vashchenko D. A., Bespyatchuk D. A., Samarin S. V., Pshidatok S. K. Perspektivy primeneniya vozdushnogo lazernogo skanirovaniya i aerofotos"emki dlya obespecheniya prostranstvennymi dannymi 3D-kadastra. Zemleustroistvo, kadastr i monitoring zemel', 2023, no. 3, pp. 179–183. DOI: 10.33920/sel-04-2303-07. |
| 5. Dobrovol'skii D. O. Issledovanie effektivnosti deshifrirovaniya ob"ektov kadastrovogo ucheta po raznosezonnym aerosnimkam i binarnym kartam vysot s primeneniem svertochnoi neironnoi seti. Izvestia vuzov. Geodesy and Aerophotosurveying, 2022, Vol. 66, no. 2, pp. 81–91. |
| 6. Kolesnikov A. A. Analiz metodov i sredstv iskusstvennogo intellekta dlya analiza i interpretatsii dannykh aktivnogo distantsionnogo zondirovaniya. Vestnik SSUGT, 2022, Vol. 27, no. 3, pp. 74–94. |
| 7. Maksimenko L. A. Sbor i obrabotka kadastrovoi informatsii v sfere upravleniya nedvizhimym imushchestvom. Vestnik SSUGT, 2024, Vol. 29, no. 1, pp. 118–126. DOI: 10.33764/2411-1759-2024-29-1-118-126. |
| 8. Novakovskii B. V., Kudryavtsev A. V., Entin A. L. Ispol'zovanie materialov vozdushnogo lazernogo skanirovaniya pri kartografirovanii rel'efa. Geoinformatika, 2020, no. 2, pp. 27–34. |
| 9. Pshidatok S.K., Gurskii I.N., Razgonyaev S.V., Lymar A.A. Sravnenie variantov rabot pri tekhnicheskoi inventarizatsii na territorii Sakhalinskoi oblasti. Ekonomika i predprinimatel'stvo, 2024, no. 3 (164), pp. 237–242. |
| 10. Bonczak B., Kontokosta C. E. (2019) Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems, no. 73, pp. 126-142. DOI: 10.1016/j.compenvurbsys.2018.09.004. |
| 11. Kashefi A., Mukerji T. (2022) Physics-informed PointNet: A deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries. arXiv. Physics, DOI: 10.48550/arXiv.2202.05476. |
| 12. Lee J. S., Park J., Ryu Y.-M. (2021) Semantic segmentation of bridge components based on hierarchical point cloud model. Automation in Construction, Volume 130, no. 103847, DOI: 10.1016/j.autcon.2021.103847. |
| 13. Phan A. V., Nguyen M. L., Nguyen Y. L. H., Bui L. T. (2018) DGCNN: A convolutional neural network over large-scale labeled graphs. Neural Networks, no. 108, pp. 533–543. DOI: 10.1016/j.neunet.2018.09.001. |
| 14. Reba M., Seto K. C. (2020) A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sensing of Environment, no. 242, pp. 174-181. DOI: 10.1016/j.rse.2020.111739. |
| 15. Seely H., Coops N. C., White J. C., Montwé D., Winiwarter L., Ragab A. (2023) Modelling tree biomass using direct and additive methods with point cloud deep learning in a temperate mixed forest. Science of Remote Sensing, Volume 8, no. 100110, DOI: 10.1016/j.srs.2023.100110. |
| 16. Tian B., Loonen R. C. G. M., Hensen J. L. M. (2023) Combining point cloud and surface methods for modeling partial shading impacts of trees on urban solar irradiance. Energy and Buildings, Volume 298, no. 113420, DOI: 10.1016/j.enbuild.2023.113420. |
| 17. Waikhom L., Patgiri R. (2023) Chapter Three – An empirical investigation on BigGraph using deep learning. Advances in Computers, no. 128, pp. 107–133. DOI: 10.1016/bs.adcom.2021.09.007. |
| 18. Wang Y., Sun Y., Liu Z., Sarma S. E., Bronstein M. M., Solomon J. M. (2019) Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics, Volume 38, no. 5, DOI: 10.1145/3326362. |
| 19. Wu F., Yan F., Shi W., Zhou Z. (2022) 3D scene graph prediction from point clouds. Virtual Reality and Intelligent Hardware, Volume 4, no. 1, pp. 76–88. DOI: 10.1016/j.vrih.2022.01.005. |
| 20. Wu B., Liu Y., Lang B., Huang L. (2017) DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model. Neurocomputing, no. 321, pp. 346–356. DOI: 10.1016/j.neucom.2018.09.008. |
| 21. Zhou K., Lindenbergh R., Gorte B., Zlatanova S. (2020) LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, no. 162, pp. 200-213. DOI: 10.1016/j.isprsjprs.2020.02.005. |
| (2025) The technique of using aerial laser scanning and neural networks to obtain reliable spatial data of the real estate cadastre. Geodesy and cartography = Geodeziya i Kartografiya, 86(6), pp. 54-63. (In Russian). DOI: 10.22389/0016-7126-2025-1020-6-54-63 |