ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
| 1. Zhuravskii A. M. Spravochnik po ellipticheskim funktsiyam. M.-L.: Izd-vo Akad. nauk SSSR, 1941, 236 p. |
| 2. Kagan V. F. Osnovy teorii poverkhnostei v tenzornom izlozhenii. Ch. 1. Apparat issledovaniya. Obshchie osnovaniya teorii i vnutrennyaya geometriya poverkhnosti. Pri red. uchastii G. B. Gurevicha. – Izd. 2-e. Moskva: LENAND, 2021, 512 p. |
| 3. Nyrtsov M.V., Fleis M.E., Sokolov A.I. (2021) Meridian section projections: a new class of the triaxial ellipsoid projections. Geodezia i Kartografia, 82(2), pp. 11-22. (In Russian). DOI: 10.22389/0016-7126-2021-968-2-11-22. |
| 4. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady. Moskva: Fizmatlit, 2002, Vol. 1, 632 p. |
| 5. Spravochnik po spetsial'nym funktsiyam. Pod red. M. Abramovitsa, I. Stigana; Per. s angl. pod red. V. A. Ditkina, L. N. Karmazinoi. Moskva: Nauka, 1979, 834 p. |
| 6. Fukushima T. Precise and fast computation of elliptic integrals and elliptic functions. URL: goo.su/2FnvnQs (accessed: 01.08.2025). |
| 7. Nyrtsov M. V., Fleis M. E., Borisov M. M., Stooke P. J. (2014) Jacobi Conformal Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial Bodies. Cartography from Pole to Pole. Lecture Notes in Geoinformation and Cartography. M. Buchroithner et al. (eds.), Berlin, Heidelberg: Springer-Verlag. pp. 235–246. |
| (2025) Inverse task of recalculating coordinates from the projection plane onto a triaxial ellipsoid. Geodesy and cartography = Geodeziya i Kartografiya, 86(8), pp. 31-41. (In Russian). DOI: 10.22389/0016-7126-2025-1022-8-31-41 |