UDC: 
DOI: 
10.22389/0016-7126-2025-1026-12-2-12
1 Dorogova I.E.
2 Demidov K.A.
Year: 
№: 
1026
Pages: 
2-12

Siberian State University of Geosystems and Technologies

1, 
2, 
Abstract:
The authors study the approaches to selecting the type of state reference system, the fundamental features, and the advantages of using their different kinds. A scheme is presented for implementing conversion from various coordinate systems to the state one, the GSK-2011, in which the latter acts as dynamic. The software implementation of the data transformation, taking into account the movement of the Earth`s crust and including its model constructed for the territory of the Russian Federation is described. Developed by the authors it is used to calculate the coordinates of points in the GSK-2011 system for different observation epochs. The results of the software verification are presented, and their comparison with various services and catalogs is carried out. The analysis of the results for points belonging to different lithospheric plates shows the greatest differences in the determined coordinates for Okhotsk (the Okhotsk Sea) lithospheric plate
The Research was carried out within the framework of the component of a research project "GEOTECH-QUANT-3" with the aim of improving the accuracy of coordinate-time determinations in the territory of the Russian Federation
References: 
1.   Dorogova I.E. (2024) Developing a software and the Earth’s crust movements’ mathematical model for the Russian Federation’s territory. Geodezia i Kartografia, 85(7), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2024-1009-7-2-11.
2.   Lipatnikov L.A. (2025) Web service for coordinate operations. Geodezia i Kartografia, 86(3), pp. 2-12. (In Russian). DOI: 10.22389/0016-7126-2025-1017-3-2-12.
3.   Altamimi Z., Metivier L., Collilieux X. (2012) ITRF2008 plate motion model. Journal of geophysical research, no. 117, B7, DOI: 10.1029/2011JB008930.
4.   Altamimi Z., Metivier L., Rebischung P., Collilieux X., Chanard K., Barneoud J. (2023) ITRF2020 Plate Motion Model. Geophysical Research Letters, no. 50 (24), pp. 1–7. DOI: 10.1029/2023GL106373.
5.   Altamimi Z., Metivier L., Rebischung P., Rouby H., Collilieux X. (2017) ITRF2014 plate motion model. Geophysical Journal International, no. 209, pp. 1906-1912. DOI: 10.1093/gji/ggx136.
6.   Argus D. F., Gordon R. G., DeMets C. (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, no. 12 (11), pp. 1–13. DOI: 10.1029/2011GC003751.
7.   Bird P. (2003) An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, no. 4 (3), DOI: 10.1029/2001GC000252.
8.   Blick G., Donnelly N., Jordan A. (2009) The practical implications and limitations of the introduction of a semi-dynamic datum – a New Zealand case study. Geodetic Reference Frames. International Association of Geodesy Symposia, no. 134, pp. 115–120. DOI: 10.1007/978-3-642-00860-3_18.
9.   Dhar S., Balasubramanian N., Dikshit O., Schuh H. (2022) Stable and upgraded horizontal datum for India. Current science, Volume 123, no. 1, pp. 43–51. DOI: 10.18520/cs/v123/i1/43-51.
10.   Shuanggen J., Wenyao Z. (2004) A revision of the parameters of the NNR-NUVEL-1A plate velocity model. Journal of Geodynamics, no. 38 (1), pp. 85–92. DOI: 10.1016/j.jog.2004.03.004.
Citation:
Dorogova I.E., 
Demidov K.A., 
(2025) Considering the Earth`s surface dynamics in coordinate conversion for the territory of the Russian Federation. Geodesy and cartography = Geodeziya i Kartografiya, 86(12), pp. 2-12. (In Russian). DOI: 10.22389/0016-7126-2025-1026-12-2-12
Publication History
Received: 04.08.2025
Accepted: 17.11.2025
Published: 20.01.2026

Content

2025 December DOI:
10.22389/0016-7126-2025-1026-12