DOI: 
10.22389/0016-7126-2025-1026-12-19-28
1 Mikhailova M.V.
2 Sokratov S.A.
3 Tulskaya N.I.
Year: 
№: 
1026
Pages: 
19-28

Autonomous Transport LLC

1, 

Lomonosov Moscow State University (MSU)

2, 
3, 
Abstract:
The authors present an algorithm for determining the boundaries and profiles of snow avalanches’ paths, required to calculate their dynamic parameters. This data (release areas, inclination of release and transit zones), as well as resulting avalanches’ velocities and run-out distances, obtained through digital elevation models presented by various sources (ArcticDEM, ASTER GDEM, ALOS DEM, FABDEM), are compared with each other and DEM from laser scanning data as well as those constructed with the help of topographic maps and plans.The latter are traditionally used for statistical modeling of avalanche parameters in engineering surveys. The simulation results are verified by the data provided in the passports of the registered avalanche events. The tool for the ArcGIS GIS package was written in Python. The outcome is a text with the required characteristics, as well as a set of the avalanche paths’ individual components vector files. FABDEM was found to be the optimal digital model from the existing ones for such calculations. The best resolution of digital models was found to be 2,5–5 m
The study was conducted under the state assignment of Lomonosov Moscow State University (Grant No. 121051400061-9) and (Grant No. 121051300175-4)
References: 
1.   Blagoveshchenskii V. P. Opredelenie lavinnykh nagruzok. Alma-Ata: Gylym, 1991, 116 p.
2.   Geografiya lavin. Pod red. S. M. Myagkova, L. A. Kanaeva. Moskva: Izdatel'stvo MGU, 1992, 336 p.
3.   Efremov Yu. V., Salatovka R. V., Nikolaichuk A. V., Zimnitskii A. V. Lavinnaya opasnost' v raione Krasnoi Polyany. Nauka Kubani, 2008, no. 4, pp. 58–63.
4.   Issledovanie snega i lavin v Khibinakh. Leningrad: Gidrometeoizdat, 1975, 176 p.
5.   Korovina D. I., Turchaninova A. S., Sokratov S. A. Otsenka effektivnosti protivolavinnykh meropriyatii na gornolyzhnom kurorte «Krasnaya Polyana». Led i Sneg, 2021, Vol. 61, no. 3, pp. 359–376. DOI: 10.31857/S2076673421030094.
6.   Omirzhanova Zh.T., Urazaliyev A.S., Shoganbekova D.A. (2015) Mapping the avalanche places in the mountainous resort area of Trans-Ili Alatau. Geodezia i Kartografia, (11), pp. 37-43. (In Russian). DOI: 10.22389/0016-7126-2015-905-11-37-43.
7.   Sneg i laviny Khibin. Otv. red. G. K. Tushinskii. Moskva: Izd-vo MGU, 1967, 356 p.
8.   Sokratov S. A. Chislennaya rekonstruktsiya statisticheskoi modeli rascheta dal'nosti vybrosa snezhnoi laviny. GeoRisk, 2024, Vol. XVIII, no. 2, pp. 8–18. DOI: 10.25296/1997-8669-2024-18-2-8-18.
9.   Tushinskii G. K. Laviny. Vozniknovenie i zashchita ot nikh. Moskva: Gosudarstvennoe izdatel'stvo geograficheskoi literatury, 1949, 212 p.
10.   Bühler Y., von Rickenbach D., Stoffel A., Margreth S., Stoffel L., Christen M. (2018) Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping. Natural Hazards and Earth System Sciences, no. 18 (12), pp. 3235–3251. DOI: 10.5194/nhess-18-3235-2018.
11.   Chu D., Liu L., Wang Zh., Nie Y., Zhang Y. (2024) Snow avalanche hazards and avalanche-prone area mapping in Tibet. Geosciences, no. 14 (12), DOI: 10.3390/geosciences14120353.
12.   Duvillier С., Eckert N., Evin G., Deschâtres M. (2023) Development and evaluation of a method to identify potential release areas of snow avalanches based on watershed delineation. Natural Hazards and Earth System Sciences, no. 23 (4), pp. 1383–1408. DOI: 10.5194/nhess-23-1383-2023.
13.   Eglit M., Yakubenko A., Zayko J. (2020) A review of Russian snow avalanche models – from analytical solutions to novel 3D models. Geosciences, no. 10 (2), DOI: 10.3390/geosciences10020077.
14.   Martini M., Baggio T., D’Agostino V. (2023) Comparison of two 2-D numerical models for snow avalanche simulation. Science of The Total Environment, Volume 896, no. 165221, DOI: 10.1016/j.scitotenv.2023.165221.
15.   Mellor M. (1968) Avalanches (Cold Regions Science and Engineering. Part III: Engineering, Section A3: Snow Technology). U.S. Cold Regions Research and Engineering Laboratory, Hanover N. H., 215 p.
16.   Oller P., Baeza C., Furdada G. (2021) Empirical α-β runout modelling of snow avalanches in the Catalan Pyrenees. Journal of Glaciology, no. 67 (266), pp. 1043–1054. DOI: 10.1017/jog.2021.50.
17.   Rafique A., Dasti M. Y. S., Ullah B., Awwad F. A., Ismail E. A. A., Saqib Z. A. (2023) Snow avalanche hazard mapping using a GIS-based AHP approach: A case of glaciers in Northern Pakistan from 2012 to 2022. Remote Sensing, no. 15 (22), DOI: 10.3390/rs15225375.
18.   (2009) The design of avalanche protection dams. Recent practical and theoretical developments. Jоhannesson T., Gauer P., Issler P., Lied K. (Eds.). Office for Official Publications of the European Communities, Luxembourg, 195 p.
Citation:
Mikhailova M.V., 
Sokratov S.A., 
Tulskaya N.I., 
(2025) Formalization of the avalanche-prone areas spatial properties to calculate snow avalanches’ dynamic parameters. Geodesy and cartography = Geodeziya i Kartografiya, 86(12), pp. 19-28. (In Russian). DOI: 10.22389/0016-7126-2025-1026-12-19-28
Publication History
Received: 07.03.2025
Accepted: 14.12.2025
Published: 20.01.2026

Content

2025 December DOI:
10.22389/0016-7126-2025-1026-12