ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Куприянов А. О. Результаты динамического летного эксперимента с использованием многофункциональной автономной ГНСС/ИНС измерительной системы // Известия вузов. Геодезия и аэрофотосъемка. – 2019. – Т. 63. – № 3. – С. 254–263. |
2. Куприянов А. О., Кузнецов Д. А., Морозов Д. А. Концепция применения совмещенной ИНС/ГНСС системы для решения обратной задачи инерциальной навигации // Приложение к журналу Известия вузов. Геодезия и аэрофотосъемка. Сборник статей по итогам научно-технической конференции. – 2019. – № 10-1. – С. 134–137. |
3. Cai X., Hsu H., Chai H., Ding L., Wang Y. (2018) Multi-antenna GNSS and INS integrated position and attitude determination without base station for land vehicles // The Journal of Navigation. 72 (2), pp. 342–358. DOI: 10.1017/S0373463318000681. |
4. Cefalo R., Snider P., Sluga T., Viler F., Pavlovčič-Prešeren P. (2023) Geodetic kinematic terrestrial navigation using a mms – multi-constellation and multi-frequency GALILEO/GPS/GLONASS performance comparisons // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLVIII-1/W1-2023, pp. 79–83. DOI: 10.5194/isprs-archives-XLVIII-1-W1-2023-79-2023. |
5. Dаbrowski P., Specht C., Koc W., Wilk A., Czaplewski K., Karwowski K., Specht M., Chrostowski P., Szmagliński J., Grulkowski S. (2019) Installation of GNSS receivers on a mobile railway platform – methodical and measurement aspects // Scientific Journals of the Maritime University of Szczecin. 60 (132), pp. 18–26. |
6. Gao M., Liu G., Wang S., Xiao G., Zhao W., Lv D. (2021) Research on tightly coupled multi-antenna GNSS/MEMS single-frequency single-epoch attitude determination in urban environment // Remote Sensing. 13 (14), DOI: 10.3390/rs13142710. |
7. Li R., Bai Z.; Chen B., Xin H., Cheng Y., Li Q. (2020) High-speed railway track integrated inspecting by GNSS-INS multisensory // IEEE/ION position. Location and Navigation Symposium (PLANS), Portland, OR, USA. pp. 798–809. DOI: 10.1109/PLANS46316.2020.9109908. |
8. Li T., Zhang H., Gao Z., Niu X., El-sheimy N. (2019) Tight Fusion of a Monocular Camera, MEMS-IMU, and Single-Frequency Multi-GNSS RTK for Precise Navigation in GNSS-Challenged Environments // Remote Sensing. 11 (6): 610, DOI: 10.3390/rs11060610. |
9. Li X., Wang X., Liao J., Li X., Li S., Lyu H. (2021) Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments // Satellite Navigation. 2 (1), pp. 1–14. DOI: 10.1186/s43020-020-00033-9. |
10. Ma C., Pan S., Gao W., Ye F., Liu L., Wang H. (2022) Improving GNSS/INS tightly coupled positioning by using BDS-3 four-frequency observations in urban environments // Remote Sensing. 14 (3): 615, DOI: 10.3390/rs14030615. |
11. Medina D., Vila-Valls J., Hesselbarth A., Ziebold R., Garcia J. (2020) On the recursive joint position and attitude determination in multi-antenna GNSS platforms // Remote Sensing. 12 (12): 1955, DOI: 10.3390/rs12121955. |
12. Rui S., Xiaotong S., Qi C., Lei J., Qi S. (2024) A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation // Measurement Science and Technology. 35, 086310, DOI: 10.1088/1361-6501/ad4623. |
13. Specht M., Specht C., Stateczny A., Burdziakowski P., Dabrowski P., Lewicka O. (2022) Study on the positioning accuracy of the GNSS/INS system supported by the RTK receiver for railway measurements // Energies. 15 (11), DOI: 10.3390/en15114094. |
14. Sun Z., Gao W., Tao X., Pan S., Wu P., Huang H. (2024) Semi-tightly coupled robust model for GNSS/UWB/INS integrated positioning in challenging environments // Remote Sensing. 16 (12), DOI: 10.3390/rs16122108. |
15. Vasilyuk N., Vorobiev M., Tokarev D. (2019) Attitude determination with the aid of a triple-antenna GNSS receiver without integer ambiguity resolutions integrated with a low-cost inertial measurement unit. 2019 DGON Inertial Sensors and Systems (ISS) pp. 1–18. DOI: 10.1109/iss46986.2019.8943610. |
16. Viler F., Cefalo R., Sluga T., Snider P., Pavlovčič-Prešeren P. (2023) The The efficiency of geodetic and low-cost GNSS devices in urban kinematic terrestrial positioning in terms of the trajectory generated by MMS // Remote Sensing. 15 (4), DOI: 10.3390/rs15040957. |
17. Wu F., Zhao J., Xue J., Li D. (2023) Ambiguity resolution method using BDS/INS model // Survey Review. 55 (390), pp. 274–284. DOI: 10.1080/00396265.2022.2089822. |
18. Xiao K., Sun F., Zhu X., Zhou P., Ma Y., Wang Y. (2024) Assessment of overlapping triple-frequency BDS-3/BDS-2/INS tightly coupled integration model in kinematic surveying // GPS Solutions. 28, 85, DOI: 10.1007/s10291-024-01637-3. |
19. Xiao K., Sun F., He M., Zhang L., Zhu X. (2021) Inertial aided BDS triple-frequency integer ambiguity rounding method // Advances in Space Research. 67 (5), pp. 1638–1655. DOI: 10.1016/j.asr.2020.12.013. |
20. Yuan R., Cui X., Lu M., Bai Z. (2024) A GNSS multiantenna fast millimeter-level positioning method for rail track deformation monitoring // IEEE Transactions on Instrumentation and Measurement. 73, pp. 1–8. DOI: 10.1109/TIM.2024.3395321. |
Многофункциональный автоматизированный измерительный стенд для задач геодезии и навигации // Геодезия и картография. – 2024. – № 12. – С. 9-17. DOI: 10.22389/0016-7126-2024-1014-12-9-17 |