УДК: 
DOI: 
10.22389/0016-7126-2024-1009-7-46-58
1 Гусев И.В.
2 Лебедев С.А.
3 Жуков А.Ю.
Год: 
№: 
1009
Страницы: 
46-58

Центральный научно-исследовательский институт машиностроения

1, 
3, 

Геофизический центр РАН

2, 
Аннотация:
В акционерном обществе «Центральный научно-исследовательский институт машиностроения» создан программный комплекс обработки первичных данных спутниковой альтиметрии космической геодезической системы «ГЕО-ИК-2», адаптированный для высокопроизводительных вычислительных систем. Программный комплекс осуществляет поэтапную многоуровневую обработку измерительной и вспомогательной информации с последовательной записью промежуточных и финальных результатов в базу данных. Реализована технология обработки данных уровня 0, получаемых с борта космического аппарата, до уровня 2 включительно. В статье приведены сведения о входных данных, используемых на разных уровнях обработки, об алгоритмах и о функциональных возможностях программного комплекса. В процессе отладки программного комплекса на высокопроизводительных вычислительных системах впервые обработаны все кондиционные данные космической геодезической системы «ГЕО-ИК-2» с 2018 по 2022 г. Разработанный программный комплекс должен послужить прототипом подсистемы обработки данных спутниковой альтиметрии наземного специального комплекса перспективной космической геодезической системы нового поколения
Исследование выполнено в рамках Федерального проекта «Поддержание, развитие и использование системы ГЛОНАСС» Государственной программы РФ «Космическая деятельность России» на 2021–2030 гг., регистрационный номер в ЕГИСУ НИОКТР № 1210806000081-5

Список литературы: 
1.   Аржанников А. А., Глотов В. Д., Митрикас В. В. Вычисление дифференциальных кодовых задержек и построение карт ионосферы с помощью ГНСС // Труды Института прикладной астрономии РАН. – 2022. – Вып. 60. – С. 3–11. DOI: 10.32876/ApplAstron.60.3-11.
2.   Зализнюк А. Н., Карутин С. Н., Митрикас В. В., Скакун И. О. Высокоточное навигационное обеспечение космических геодезических комплексов с помощью системы ГЛОНАСС // Гироскопия и навигация. – 2019. – Т. 27. – № 3. – С. 18–30. DOI: 10.17285/0869-7035.0006.
3.   Розинкина И. А., Алферов Ю. В., Астахова Е. Д., Пономарева Т. Я., Цветков В. И. Глобальная оперативная спектральная модель Гидрометцентра России: основные характеристики и особенности использования в технологиях кратко- и среднесрочного прогноза // 80 лет Гидрометцентру России: Сб. статей. – М.: Триада, – 2010. – С. 160–192.
4.   Amante C., Eakins B. W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado 19 p. DOI: 10.7289/V5C8276M.
5.   Andersen O.B., Scharroo R. (2010) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. Coastal altimetry Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 103–145. DOI: 10.1007/978-3-642-12796-0_5.
6.   Bilitza D. (2018) IRI the international standard for the ionosphere // Advances in radio science. 16, pp. 1–11. DOI: 10.5194/ARS-16-1-2018.
7.   Brown G. S. (1977) The average impulse response of a rough surface and its applications // IEEE transactions on antennas and propagation. 25 (1), pp. 67-74. DOI: 10.1109/TAP.1977.1141536.
8.   Carayon G., Steunou N., Courrière J.-L., Thibaut P. (2003) Poseidon-2 radar altimeter design and results of in-flight performances. Special issue: Jason-1 calibration / validation // Marine Geodesy. 26 (3–4), pp. 159–165. DOI: 10.1080/714044516.
9.   Carrere L., Lyard F., Cancet M., Guillot A., Roblou L. (2013) FES 2012: A new global tidal model taking advantage of nearly 20 years of altimetry // Proceedings of the 20 Years of Progress in Radar Altimetry Symposium (Venice, Italy). pp. 1–20.
10.   Cartwright D. E., Edden A. C. (1973) Corrected tables of tidal harmonics // Geophysical journal international. 33 (3), pp. 253–264.
11.   Cartwright D. E., Tayler R. J. (1971) New computations of the tide-generating potential // Geophysical Journal International. 23 (1), pp. 45–73.
12.   Dahlen F. A. (1976) The passive influence of the oceans upon the rotation of the Earth // Geophysical Journal International. 46 (2), pp. 363–406.
13.   Desjonquères J. D., Carayonet G., Steunou N., Lambin J. (2010) Poseidon-3 radar altimeter: New modes and in-flight performances // Marine Geodesy. 33 (1), pp. 53–79. DOI: 10.1080/01490419.2010.488970.
14.   Dinardo S., Maraldi C., Daguze J.-A., Amraoui S., Boy F., Moreau T., Fornari M., Culle R., Picot N. (2022) Sentinel-6 MF Poseidon-4 radar altimeter in-flight calibration and performances monitoring // IEEE Transactions on Geoscience and Remote Sensing. 60: 5119316, pp. 1-16. DOI: 10.1109/TGRS.2022.3216595.
15.   Dziewonski A. M., Anderson D. L. (1981) Preliminary reference Earth model // Physics of the earth and planetary interiors. 25 (4), pp. 297–356. DOI: 10.1016/0031-9201(81)90046-7.
16.   Feltens J., Dow J. M., Martín-Mur T. J., Romero I., García Martínez C. (1999) Routine production of ionosphere TEC maps at ESOC. Proceedings of the IGS Analysis Centers Workshop (La Jolla, California) URL: clck.ru/3Bqq6e (дата обращения: 15.03.2024).
17.   Fienga A., Deram P., Viswanathan V., Ruscio A. D., Bernus L., Durante D., Gastineau M., Laskar J. (2019) INPOP19a planetary ephemerides. Research Report IMCCE 35 p. URL: clck.ru/3Bqrer (дата обращения: 15.03.2024).
18.   Folkner W. M., Williams J. G., Boggs D. H., Park R. S., Kuchynka P. (2014) The planetary and lunar ephemerides DE430 and DE431 // Interplanetary Network Progress Report. 196 (1), pp. 42–196.
19.   Ghoddousi-Fard R. (2014) GPS ionospheric mapping at Natural Resources Canada. IGS workshop (Pasadena, 23–27 June) pp. 23–27.
20.   Hayne G. S. (1980) Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering // IEEE Transactions on Antennas and Propagation. 28, 5, pp. 687-692.
21.   Imel D. A. (1994) Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction // Journal of Geophysical Research: Oceans. 99 (C12), pp. 24895–24906. DOI: 10.1029/94JC01869.
22.   Inness A., Ades M., Agustí-Panareda A., et al. (2019) The CAMS reanalysis of atmospheric composition // Atmospheric Chemistry and Physics. 19 (6), pp. 3515–3556. DOI: 10.5194/acp-19-3515-2019.
23.   Jousset S., Mulet S., Greiner E., Wilkin J., Vidar L., Dibarboure G., Picot N. (2023) New global Mean Dynamic Topography CNES-CLS-22 combining drifters, hydrological profiles and high frequency radar data // ESS Open Archive. 23 p. DOI: 10.22541/essoar.170158328.85804859/v1.
24.   Kistler R., Kalnay E., Collins W., et al. (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation // Bulletin of the American Meteorological society. 82 (2), pp. 247–268. DOI: 10.1175/1520-0477(2001)0822.3.CO;2.
25.   Kudryavtsev S. M. (2004) Improved harmonic development of the Earth tide-generating potential // Journal of Geodesy. 77, 12, pp. 829–838. DOI: 10.1007/s00190-003-0361-2.
26.   Lemoine F. G., Kenyon S. C., Factor J. K., et al. (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96 National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland,
27.   Lyard F. H., Allain D. J., Cancet M., Carrère L., Picot N. (2021) FES2014 global ocean tide atlas: design and performance // Ocean Science. 17 (3), pp. 615–649. DOI: 10.5194/os-17-615-2021.
28.   Meier, W. N., Fetterer, F., Windnagel, A. K., Stewart, J. S. (2021) NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 [Data Set] National Snow and Ice Data Center, Boulder, Colorado USA, DOI: 10.7265/EFMZ-2T65.
29.   Mulet S., Rio M.-H., Etienne H., et al. (2021) The new CNES-CLS18 global mean dynamic topography // Ocean Science. 17 (3), pp. 789–808. DOI: 10.5194/OS-17-789-2021.
30.   Park R. S., Folkner W. M., Williams J. G., Boggs D. H. (2021) The JPL planetary and lunar ephemerides DE440 and DE441 // The Astronomical Journal. 161 (3): 105, DOI: 10.3847/1538-3881/abd414.
31.   Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) // Journal of Geophysical Research. 117, B4: B04406, DOI: 10.1029/2011JB008916.
32.   (2010) IERS Conventions, IERS Technical Note 36 / Eds.: G. Petit, B. Luzum.// International Earth Rotation and Reference Systems Service. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 179 p. URL: www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
33.   Pitjeva E., Pavlov D., Aksim D., Kan M. (2019) Planetary and lunar ephemeris EPM2021 and its significance for Solar system research // Proceedings of the International Astronomical Union. 15 (S364), pp. 220–225. DOI: 10.1017/S1743921321001447.
34.   Pujol M.-I., Schaeffer P., Faugère Y., Raynal M., Dibarboure G., Picot N. (2018) Gauging the improvement of recent mean sea surface models: A new approach for identifying and quantifying their errors // Journal of Geophysical Research: Oceans. 123 (8), pp. 5889–5911. DOI: 10.1029/2017JC013503.
35.   Raizonville P., Zanife O. Z., Jaulhac Y., Richard J. (1991) Poseidon radar altimeter flight model design and tests results. IGARSS`91 // Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium. pp. 1773–1778. DOI: 10.1109/IGARSS.1991.579589.
36.   Ray R. D. (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2 Goddard Space Flight Center, Greenbelt, Maryland, 59 p.
37.   Rio M. H., Mulet S., Picot N. (2014) Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents // Geophysical Research Letters. 41 (24), pp. 8918–8925. DOI: 10.1002/2014GL061773.
38.   Schaeffer P., Faugére Y., Legeais J. F., Ollivier A., Guinle T., Picot N. (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data // Marine Geodesy. 35 (S1), pp. 3–19. DOI: 10.1080/01490419.2012.718231.
39.   Schaeffer P., Pujol M.-I., Veillard P., Faugere Y., Dagneaux Q., Dibarboure G., Picot N. (2023) The CNES CLS 2022 mean sea surface: Short wavelength improvements from CryoSat-2 and SARAL/AltiKa high-sampled altimeter data // Remote Sensing. 15 (11): 2910, DOI: 10.3390/rs15112910.
40.   Schaer S., Beutler G., Rothacher M., Springer T. (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center URL: clck.ru/3BrFH2 (дата обращения: 10.03.2024).
41.   Simmons A., Uppala S., Dee D., Kobayashi S. (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards // ECMWF Newsletter. 110, pp. 25–35. DOI: 10.21957/pocnex23c6.
42.   Zhang Qiang, Zhao Qi Le (2019) Evaluation and analysis of the global ionosphere maps from Wuhan University IGS Ionosphere Associate Analysis Center // Chinese Journal of Geophysics. 62 (12), pp. 4493–4505.
Образец цитирования:
Гусев И.В., 
Лебедев С.А., 
Жуков А.Ю., 
Программный комплекс обработки данных спутниковой альтиметрии космической геодезической системы «ГЕО-ИК-2» // Геодезия и картография. – 2024. – № 7. – С. 46-58. DOI: 10.22389/0016-7126-2024-1009-7-46-58
СТАТЬЯ
Поступила в редакцию: 25.04.2024
Принята к публикации: 03.07.2024
Опубликована: 20.08.2024

Содержание номера

2024 июль DOI:
10.22389/0016-7126-2024-1009-7