UDC: 
DOI: 
10.22389/0016-7126-2024-1009-7-46-58
1 Gusev I.V.
2 Lebedev S.A.
3 Zhukov A.Y.
Year: 
№: 
1009
Pages: 
46-58

Central Research Institute for Machine Building

1, 
3, 

RAS Geophysical Center

2, 
Abstract:
The Central Research Institute for Machine Building JSC has created a software package for processing primary satellite altimetry data of the “GEO-IK-2” space geodetic system, adapted for high-performance computing systems. The software package performs step-by-step multi-level processing of measuring and auxiliary information with sequential recording of intermediate and final results in a database. The technology of processing level 0 data received from the spacecraft up to and including level 2 has been implemented. The article provides information about the input data used at different levels of processing, about the algorithms and functionality of the software package. In the process of debugging the software package on high-performance computing systems all the valid data of the “GEO-IK-2” space geodetic system from 2018 to 2022 were processed for the first time. The developed software package should serve as a prototype of the satellite altimetry data processing subsystem of the ground-based special complex of the promising new generation space geodetic system
The study was carried out within the framework of the Federal project “Maintenance, development and use of the GLONASS system” of the State program of the Russian Federation “Space activities of Russia” for 2021–2030, EGISU No. 1210806000081-5
References: 
1.   Arzhannikov A. A., Glotov V. D., Mitrikas V. V. Vychislenie differentsial'nykh kodovykh zaderzhek i postroenie kart ionosfery s pomoshch'yu GNSS. Trudy Instituta prikladnoi astronomii RAN, 2022, 60. pp. 3–11. DOI: 10.32876/ApplAstron.60.3-11.
2.   Zaliznyuk A. N., Karutin S. N., Mitrikas V. V., Skakun I. O. Vysokotochnoe navigatsionnoe obespechenie kosmicheskikh geodezicheskikh kompleksov s pomoshch'yu sistemy GLONASS. Giroskopiya i navigatsiya, 2019, Vol. 27, no. 3, pp. 18–30. DOI: 10.17285/0869-7035.0006.
3.   Rozinkina I. A., Alferov Yu. V., Astakhova E. D., Ponomareva T. Ya., Tsvetkov V. I. Global'naya operativnaya spektral'naya model' Gidromettsentra Rossii: osnovnye kharakteristiki i osobennosti ispol'zovaniya v tekhnologiyakh kratko- i srednesrochnogo prognoza. 80 let Gidromettsentru Rossii: Sb. statei, Moskva: Triada, 2010, pp. 160–192.
4.   Amante C., Eakins B. W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado. 19 p. DOI: 10.7289/V5C8276M.
5.   Andersen O.B., Scharroo R. (2010) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. Coastal altimetry. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 103–145. DOI: 10.1007/978-3-642-12796-0_5.
6.   Bilitza D. (2018) IRI the international standard for the ionosphere. Advances in radio science, no. 16, pp. 1–11. DOI: 10.5194/ARS-16-1-2018.
7.   Brown G. S. (1977) The average impulse response of a rough surface and its applications. IEEE transactions on antennas and propagation, no. 25 (1), pp. 67-74. DOI: 10.1109/TAP.1977.1141536.
8.   Carayon G., Steunou N., Courrière J.-L., Thibaut P. (2003) Poseidon-2 radar altimeter design and results of in-flight performances. Special issue: Jason-1 calibration / validation. Marine Geodesy, no. 26 (3–4), pp. 159–165. DOI: 10.1080/714044516.
9.   Carrere L., Lyard F., Cancet M., Guillot A., Roblou L. (2013) FES 2012: A new global tidal model taking advantage of nearly 20 years of altimetry. Proceedings of the 20 Years of Progress in Radar Altimetry Symposium (Venice, Italy), pp. 1–20.
10.   Cartwright D. E., Edden A. C. (1973) Corrected tables of tidal harmonics. Geophysical journal international, no. 33 (3), pp. 253–264.
11.   Cartwright D. E., Tayler R. J. (1971) New computations of the tide-generating potential. Geophysical Journal International, no. 23 (1), pp. 45–73.
12.   Dahlen F. A. (1976) The passive influence of the oceans upon the rotation of the Earth. Geophysical Journal International, no. 46 (2), pp. 363–406.
13.   Desjonquères J. D., Carayonet G., Steunou N., Lambin J. (2010) Poseidon-3 radar altimeter: New modes and in-flight performances. Marine Geodesy, no. 33 (1), pp. 53–79. DOI: 10.1080/01490419.2010.488970.
14.   Dinardo S., Maraldi C., Daguze J.-A., Amraoui S., Boy F., Moreau T., Fornari M., Culle R., Picot N. (2022) Sentinel-6 MF Poseidon-4 radar altimeter in-flight calibration and performances monitoring. IEEE Transactions on Geoscience and Remote Sensing, no. 60: 5119316, pp. 1-16. DOI: 10.1109/TGRS.2022.3216595.
15.   Dziewonski A. M., Anderson D. L. (1981) Preliminary reference Earth model. Physics of the earth and planetary interiors, no. 25 (4), pp. 297–356. DOI: 10.1016/0031-9201(81)90046-7.
16.   Feltens J., Dow J. M., Martín-Mur T. J., Romero I., García Martínez C. (1999) Routine production of ionosphere TEC maps at ESOC. Proceedings of the IGS Analysis Centers Workshop (La Jolla, California). URL: clck.ru/3Bqq6e (accessed: 15.03.2024).
17.   Fienga A., Deram P., Viswanathan V., Ruscio A. D., Bernus L., Durante D., Gastineau M., Laskar J. (2019) INPOP19a planetary ephemerides. Research Report IMCCE. 35 p. URL: clck.ru/3Bqrer (accessed: 15.03.2024).
18.   Folkner W. M., Williams J. G., Boggs D. H., Park R. S., Kuchynka P. (2014) The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report, no. 196 (1), pp. 42–196.
19.   Ghoddousi-Fard R. (2014) GPS ionospheric mapping at Natural Resources Canada. IGS workshop (Pasadena, 23–27 June). pp. 23–27.
20.   Hayne G. S. (1980) Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Transactions on Antennas and Propagation, Volume 28, no. 5, pp. 687-692.
21.   Imel D. A. (1994) Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction. Journal of Geophysical Research: Oceans, no. 99 (C12), pp. 24895–24906. DOI: 10.1029/94JC01869.
22.   Inness A., Ades M., Agustí-Panareda A., et al. (2019) The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, no. 19 (6), pp. 3515–3556. DOI: 10.5194/acp-19-3515-2019.
23.   Jousset S., Mulet S., Greiner E., Wilkin J., Vidar L., Dibarboure G., Picot N. (2023) New global Mean Dynamic Topography CNES-CLS-22 combining drifters, hydrological profiles and high frequency radar data. ESS Open Archive, 23 p. DOI: 10.22541/essoar.170158328.85804859/v1.
24.   Kistler R., Kalnay E., Collins W., et al. (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological society, no. 82 (2), pp. 247–268. DOI: 10.1175/1520-0477(2001)0822.3.CO;2.
25.   Kudryavtsev S. M. (2004) Improved harmonic development of the Earth tide-generating potential. Journal of Geodesy, Volume 77, no. 12, pp. 829–838. DOI: 10.1007/s00190-003-0361-2.
26.   Lemoine F. G., Kenyon S. C., Factor J. K., et al. (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland,
27.   Lyard F. H., Allain D. J., Cancet M., Carrère L., Picot N. (2021) FES2014 global ocean tide atlas: design and performance. Ocean Science, no. 17 (3), pp. 615–649. DOI: 10.5194/os-17-615-2021.
28.   Meier, W. N., Fetterer, F., Windnagel, A. K., Stewart, J. S. (2021) NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 [Data Set]. National Snow and Ice Data Center, Boulder, Colorado USA, DOI: 10.7265/EFMZ-2T65.
29.   Mulet S., Rio M.-H., Etienne H., et al. (2021) The new CNES-CLS18 global mean dynamic topography. Ocean Science, no. 17 (3), pp. 789–808. DOI: 10.5194/OS-17-789-2021.
30.   Park R. S., Folkner W. M., Williams J. G., Boggs D. H. (2021) The JPL planetary and lunar ephemerides DE440 and DE441. The Astronomical Journal, no. 161 (3): 105, DOI: 10.3847/1538-3881/abd414.
31.   Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, no. 117, B4: B04406, DOI: 10.1029/2011JB008916.
32.   (2010) IERS Conventions, IERS Technical Note 36 . Eds.: G. Petit, B. Luzum.International Earth Rotation and Reference Systems Service, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 179 p. URL: www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
33.   Pitjeva E., Pavlov D., Aksim D., Kan M. (2019) Planetary and lunar ephemeris EPM2021 and its significance for Solar system research. Proceedings of the International Astronomical Union, no. 15 (S364), pp. 220–225. DOI: 10.1017/S1743921321001447.
34.   Pujol M.-I., Schaeffer P., Faugère Y., Raynal M., Dibarboure G., Picot N. (2018) Gauging the improvement of recent mean sea surface models: A new approach for identifying and quantifying their errors. Journal of Geophysical Research: Oceans, no. 123 (8), pp. 5889–5911. DOI: 10.1029/2017JC013503.
35.   Raizonville P., Zanife O. Z., Jaulhac Y., Richard J. (1991) Poseidon radar altimeter flight model design and tests results. IGARSS`91. Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium, pp. 1773–1778. DOI: 10.1109/IGARSS.1991.579589.
36.   Ray R. D. (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. Goddard Space Flight Center, Greenbelt, Maryland, 59 p.
37.   Rio M. H., Mulet S., Picot N. (2014) Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysical Research Letters, no. 41 (24), pp. 8918–8925. DOI: 10.1002/2014GL061773.
38.   Schaeffer P., Faugére Y., Legeais J. F., Ollivier A., Guinle T., Picot N. (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geodesy, no. 35 (S1), pp. 3–19. DOI: 10.1080/01490419.2012.718231.
39.   Schaeffer P., Pujol M.-I., Veillard P., Faugere Y., Dagneaux Q., Dibarboure G., Picot N. (2023) The CNES CLS 2022 mean sea surface: Short wavelength improvements from CryoSat-2 and SARAL/AltiKa high-sampled altimeter data. Remote Sensing, no. 15 (11): 2910, DOI: 10.3390/rs15112910.
40.   Schaer S., Beutler G., Rothacher M., Springer T. (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. URL: clck.ru/3BrFH2 (accessed: 10.03.2024).
41.   Simmons A., Uppala S., Dee D., Kobayashi S. (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, no. 110, pp. 25–35. DOI: 10.21957/pocnex23c6.
42.   Zhang Qiang, Zhao Qi Le (2019) Evaluation and analysis of the global ionosphere maps from Wuhan University IGS Ionosphere Associate Analysis Center. Chinese Journal of Geophysics, no. 62 (12), pp. 4493–4505.
Citation:
Gusev I.V., 
Lebedev S.A., 
Zhukov A.Y., 
(2024) Satellite altimetry data processing software package of the "GEO-IK-2" space geodetic system. Geodesy and cartography = Geodezia i Kartografia, 85(7), pp. 46-58. (In Russian). DOI: 10.22389/0016-7126-2024-1009-7-46-58
Publication History
Received: 25.04.2024
Accepted: 03.07.2024
Published: 20.08.2024

Content

2024 July DOI:
10.22389/0016-7126-2024-1009-7