UDC: 
DOI: 
10.22389/0016-7126-2023-994-4-14-19
1 Chistiakova E.A.
Year: 
№: 
994
Pages: 
14-19

Roskadastr, PLC

1, 
Abstract:
Thorough study of the equipment is essential before any measurements are made. Relative tidal gravimeters are complex technical devices; they enable measuring gravity time variations with high accuracy (1 μGal). The main source of systematic errors is their instrumental drift. Value and nonlinearity of the drift for each unit is individual. There are plenty of considering methods; they depend on material and technical opportunities. The simplest and less resource-consuming algorithm is to take the drift into account using the piecewise linear approximation technique. This research deals with assessing the accuracy of accounting the instrumental drift of the gPhoneX#117 (Micro-g LaCoste, USA) tidal gravimeter using the specified means. For this purpose, the drift was obtained through approximation by polynomials of the first and second degree was estimated in comparison with the results of reference (absolute) observations. It is concluded that the method of piecewise linear approximation can only be used for rejecting poor quality measurements. It is recommended to identify, control and accounting the instrumental drift by comparing measurements with the data of regular absolute monitoring.
References: 
1.   Mel'khior P. Zemnye prilivy. Moskva: Mir, 1968, 482 p.
2.   Chistyakova E. A. Issledovanie atmosfernykh nagruzochnykh effektov po rezul'tatam monitoringovykh nablyudenii sily tyazhesti na punkte TsNIIGAiK. Trudy nauchnogo kongressa Mezhdunarodnogo nauchno-promyshlennogo foruma «Velikie reki’ 2019», Nizhnii Novgorod: Nizhegorodskii gosudarstvennyi arkhitekturno-stroitel'nyi universitet, 2019, 3 Vol. 1, pp. 296–299.
3.   Boy J., Hinderer J. (2006) Study of the seasonal gravity signal in superconducting gravimeter data. Journal of Geodynamics, Volume 41, no. 1, pp. 227–233. DOI: 10.1016/J.JOG.2005.08.035.
4.   Bramanto B., Breili K., Gerlach C., Ophaug V., Gjevestad J. G. O. (2022) Reducing hydrological disturbances in absolute gravity observations by combining global hydrological models with a regional runoff model. Geophysical Journal International, no. 230 (2), pp. 976–994. DOI: 10.1093/gji/ggac054.
5.   (2010) gPhone. Hardware Manual. Microg LaCoste. 94 p.
6.   Kang K., Li H., Peng P., Hao H., Wei J. (2011) Seasonal Variations in Hydrological Influences on Gravity Measurements Using gPhones. Terrestrial, Atmospheric and Oceanic Sciences, no. 22 (2), pp. 157–168. DOI: 10.3319/TAO.2010.08.02.01(TibXS).
7.   Luan W., Shen W., Jia J. (2023) Analysis of iGrav Superconducting Gravity Measurements in Kunming, China, with Emphasis on Calibration, Tides, and Hydrology. Pure and Applied Geophysics, no. 180, pp. 643–660. DOI: 10.1007/s00024-022-03036-6.
8.   Meurers B. (2018) Scintrex CG5 used for superconducting gravimeter calibration. Geodesy and Geodynamics, no. 9 (3), pp. 197–203. DOI: 10.1016/j.geog.2017.02.009.
9.   Okiwelu A., Okwueze E., Osazuwa I. (2011) Strategies for Accurate Determination of Drift Characteristics of Unstable Gravimeter in Tropical, Coastal Environment. Applied Physics Research, no. 3 (2), pp. 190–202. DOI: 10.5539/apr.v3n2190.
10.   Riccardi U., Rosat S., Hinderer J. (2011) Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia, no. 48 (1), pp. 28–39. DOI: 10.1088/0026-1394/48/1/003.
11.   Shi T., Guo J., Yan H., Chang X., Ji B., Liu X. (2022) Assessing Height Variations in Qinghai-Tibet Plateau from Time-Varying Gravity Data and Hydrological Model. Remote Sensing, no. 14 (19), pp. 4707. DOI: 10.3390/rs14194707.
12.   Wang Q., Mou L., Feng J., Li C., Su D., Wu S. (2019) Investigation on gPhone gravimeter-119 for gravity variations observation during the 10th International Comparison of Absolute Gravimeters (ICAG-2017). Conference: 10th International Symposium on Precision Engineering Measurements and Instrumentation (ISPEMI 2018), no. 11053, pp. 699–704. DOI: 10.1117/12.2512020.
Citation:
Chistiakova E.A., 
(2023) Detecting and considering a relative tidal gravimeter drift. Geodesy and cartography = Geodezia i Kartografia, 84(4), pp. 14-19. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-14-19
Publication History
Received: 06.02.2023
Accepted: 25.04.2023
Published: 20.05.2023

Content

2023 April DOI:
10.22389/0016-7126-2023-994-4