DOI: 
10.22389/0016-7126-2024-1005-3-6-13
1 Mustafin M.G.
2 Moussa Kh.I.
Year: 
№: 
1005
Pages: 
6-13

Empress Catherine II Saint Petersburg Mining University

1, 
2, 
Abstract:
The technology for determining the coordinates of points on the earth using the global navigation satellite system (GNSS) is becoming a standard along with ground-based methods. In this case, determining the plane coordinates of points does not cause any particular difficulties. However, to identify normal altitudes using this technique with a given accuracy, a special research is required. The fact is that according to satellite definitions, the geodetic height (H) is directly obtained, which differs from the normal one (HN) by an amount called height anomaly. This and the above mentioned value itself can be determined from the results of satellite leveling, taking into account the gravitational model of the Earth. But without clarification through ground measurements the result may not meet the required accuracy. In this work, geodetic and normal heights were determined for 5 control points in the Mount Lebanon region, where surveys were carried out using GNSS technology and geometric levelling. The obtained data were compared with satellite levelling one using the EGM2008 Earth model. In this case, geometric levelling was performed along different routes to ensure the information redundancy and determine average values. Thus, the normal heights obtained using the referred technology (quasi-geoid) served to correct those of the EGM2008 Earth model. The results of creating an altitudinal base in a local area corresponding to the foothill area are presented
References: 
1.   Balandin V. N., Bryn' M. Ya., Men'shikov I. V., Firsov Ju. G., Shtern L. S. Algoritm vychisleniya ploskih pryamougol'nyh koordinat, sblizheniya meridianov i masshtaba proektsii Gaussa v 6-gradusnoj zone po geodezicheskim koordinatam. Zapiski Gornogo instituta, 2013, Vol. 204, pp. 24–26.
2.   Balandin V.N., Menchikov I.V., Firsov Yu.G., Efanov A.I. (2016) The determination of height anomaly by satellitic methodes. Geodezia i Kartografia, (2), pp. 11–16. (In Russian). DOI: 10.22389/0016-7126-2016-908-2-11-16.
3.   Balandin V.N., Menchikov I.V., Stern S.L. (2012) On determination of points normal heights for local objects based on satellite leveling. Geodezia i Kartografia, (10), pp. 17-21.
4.   Bogolyubova A. A. Kriterii sistemy klassifikatsii zemel'nykh ugodii osobo okhranyaemykh prirodnykh territorii Sankt-Peterburga. Zapiski Gornogo instituta, 2013, Vol. 204, pp. 192–197.
5.   Budilova V. V., Pavlovich A. A., Ikonnikov D. A. Analiz rasprostraneniya deformatsii po zemnoi poverkhnosti pri razrabotke mestorozhdeniya otkrytym sposobom. Zapiski Gornogo instituta, 2013, Vol. 204, pp. 117–121.
6.   Gienko E. G., Elagin A. V., Reznichenko K. Yu. Rezul'taty postroeniya lokal'noi modeli kvazigeoida na territorii geodezicheskogo uchebnogo poligona SGUGIT. Interekspo GEO-Sibir', 2021, Vol. 1, pp. 252–260.
7.   Gienko E. G, Kuz'min V. I., Surnin Yu. V. Nekotorye rezul'taty opredeleniya lokal'nogo gravitatsionnogo polya na poverkhnosti Zemli. Vestnik SSUGT, 2006, no. 11, pp. 8–13.
8.   Zubov A. V., Pavlov N. S. Otsenka stabil'nosti opornykh i deformatsionnykh marksheidersko-geodezicheskikh setei. Marksheiderskii vestnik, 2013, no. 2, pp. 21–23.
9.   Kalyuzhin V.A., Mazurov B.T., Obidenko V.I. (2018) Determining the geographic center based on geoinformation technologies (by the example of lake Baikal). Geodezia i Kartografia, 79(11), pp. 9-14 . (In Russian). DOI: 10.22389/0016-7126-2018-941-11-9-14.
10.   Kashcheev R. A., Komarov R. V., Novlyanskaya I. O., Khusnutdinov N. R. Sravnitel'nyi analiz modelei geopotentsiala po rezul'tatam opisaniya regional'nogo geoida zony Povolzh'ya. Izvestia vuzov. Geodesy and Aerophotosurveying, 2020, no. 1, pp. 32–37.
11.   Larionov A. A., Rudnitskaya N. I. Sozdanie lokal'noi modeli vysot kvazigeoida geometricheskim metodom. Zemlya Belarusi, 2016, no. 1, pp. 36–41.
12.   Markovich K. I. Analiz novejshej global’noj gravitacionnoj modeli Zemli EIGEN-6C4 po geodezicheskim i gravimetricheskim dannym primenitel’no k Polockomu geodinamicheskomu profilju. Vestnik Polockogo gosudarstvennogo universiteta. Serija F. Stroitel’stvo. Prikladnye nauki, 2015, no. 8, pp. 190–193.
13.   Mustafin M.G., Nguyen Huu Viet (2019) The Estimation of the Building’s Vertical Shifts and Construction Groundworks on the Basis of Deformation Network Element Analysis. Geodezia i Kartografia, 80(3), pp. 11-19. (In Russian). DOI: 10.22389/0016-7126-2019-945-3-11-19.
14.   Obidenko V. I., Opritova O. A., Reshetov A. P. Razrabotka metodiki polucheniya normal'nyh vysot na territorii Novosibirskoj oblasti s ispol'zovaniem global'noj modeli EGM2008. Vestnik SGUGiT, 2016, 1 (33). pp. 14–25.
15.   Potyukhlyaev V. G. Raschet tochnosti postroeniya razbivochnoi seti s ispol'zovaniem sputnikovykh navigatsionnykh sistem. Zapiski Gornogo instituta, 2012, Vol. 199, pp. 325–328.
16.   Sergeev O. P. Geodezicheskie raboty na stroitel'stve vantovogo mosta cherez Nevu v Sankt-Peterburge. Zapiski Gornogo instituta, 2004, Vol. 156, pp. 217–218.
17.   Surnin Yu. V. Opredelenie astronomicheskikh, gravimetricheskikh i geodezicheskikh transformant vneshnego gravitatsionnogo polya na lokal'nom uchastke zemnoi poverkhnosti. Vestnik SSUGT, 2006, no. 11, pp. 3–8.
18.   Trushko V. L., D'yakov B. N. Topologicheskaya nadezhnost' marksheiderskikh geodezicheskikh setei. Zapiski Gornogo instituta, 2009, Vol. 180, pp. 198–202.
19.   Khudyakov G. I. Razvitie metodov analiticheskoi geometrii na sfere dlya resheniya zadach geodezii i navigatsii. Zapiski Gornogo instituta, 2017, Vol. 223, pp. 70–81. DOI: 10.18454/PMI.2017.1.70.
20.   Shendrik N. K. Formirovanie lokal'noi tsifrovoi modeli vysot geoida na territoriyu Novosibirskoi oblasti. Vestnik SSUGT, 2016, no. 4 (36), pp. 66–72.
21.   Alcantar-Elizondo N., Garcia-Lopez R. V., Torres-Carillo X. G., Vazquez-Becerra G. E. (2021) Combining Global Geopotential Models, Digital Elevation Models, and GNSS/Leveling for Precise Local Geoid Determination in Some Mexico Urban Areas: Case Study. ISPRS International Journal of Geo-Information, no. 10 (12): 819, DOI: 10.3390/ijgi10120819.
22.   Aleem K. F., Babayo A., Aderoju Q. O. (2022) Global Navigation Satellite System (GNSS) and other geospatial tools for various applications. International Journal of Science and Research Archive, no. 5 (2), pp. 67–76. DOI: 10.30574/ijsra.2022.5.2.0205.
23.   Chymyrov A., Bekturov A. (2019) Evaluation of the modern Earth Gravitational Models over territory of the Kyrgyz Republic. International Journal of Geoinformatics, no. 15 (4), pp. 77–83.
24.   Ellmann A., Märdla S., Oja T. (2019) The 5 mm geoid model for Estonia computed by the least squares modified Stokes`s formula. Survey review, no. 52 (373), pp. 352–372. DOI: 10.1080/00396265.2019.1583848.
25.   Erol S., Erol B. (2021) A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, no. 173 (2): 108623, DOI: 10.1016/j.measurement.2020.108623.
26.   Guo D., Xue Z. (2021) Geoid determination through the combined least-squares adjustment of GNSS/levelling/gravity networks – a case study in Linyi, China. Survey review, no. 53 (381), pp. 504–512. DOI: 10.1080/00396265.2020.1842642.
27.   Herbert T., Okiemute E. S. (2021) Determination of orthometric heights of points using gravimetric/GPS and geodetic levelling approaches. International Journal of Environment and Geoinformatics, no. 9 (1), pp. 52–59. DOI: 10.30897/ijegeo.899062.
28.   Li Y. S., Ning F. S. (2019) Research into GNSS levelling using network RTK in Taiwan. Survey review, no. 51 (364), pp. 17–25. DOI: 10.1080/00396265.2017.1340130.
29.   Mosquera J. A. T., Silva M. C., Isla F., Prado C. (2021) Assessment of hybrid geoids in Chile and Spain, combining GGM and GNSS/Leveling observations. Geodesy and geodynamics, no. 12 (2), pp. 65–92. DOI: 10.1016/j.geog.2020.12.003.
30.   Oluyori P. D., Ono M. N., Eteje S. O. (2018) Computations of geoid undulation from comparison of GNSS/levelling with EGM 2008 for geodetic applications. International Journal of Scientific and Research Publications, no. 8 (10), pp. 235–241. DOI: 10.29322/IJSRP.8.10.2018.p8230.
31.   Orejuela I. P., González C. L., Guerra X. B., Mora E. C., Toulkeridis T. (2021) Geoid undulation modeling through the Cokriging method – A case study of Guayaquil, Ecuador. Geodesy and Geodynamics, no. 12 (5), pp. 356–367. DOI: 10.1016/j.geog.2021.04.004.
32.   Vu D. T., Bruinsma S., Bonvalot S., Bui L. K., Balmino G. (2021) Determination of the geopotential value on the permanent GNSS stations in Vietnam based on the Geodetic Boundary Value Problem approach. Geophysical Journal International, no. 226 (2), pp. 1206–1219. DOI: 10.1093/gji/ggab166.
33.   Wang Y. M., Li X., Ahlgren K., Krcmaric J. (2020) Colorado geoid modeling at the US National Geodetic Survey. Journal of Geodesy, no. 94, 106, DOI: 10.1007/s00190-020-01429-w.
Citation:
Mustafin M.G., 
Moussa Kh.I., 
(2024) Results of creating an altitude-base using a local quasi-geoid model in the Republic of Lebanon. Geodesy and cartography = Geodezia i Kartografia, 85(3), pp. 6-13. (In Russian). DOI: 10.22389/0016-7126-2024-1005-3-6-13
Publication History
Received: 29.09.2023
Accepted: 05.03.2024
Published: 20.04.2024

Content

2024 March DOI:
10.22389/0016-7126-2024-1005-3