DOI: 
10.22389/0016-7126-2024-1011-9-12-24
1 Borisova T.A.
2 Beshentsev A.N.
3 Petrov S.A.
Year: 
№: 
1011
Pages: 
12-24

Baikal Institute of Nature Management SB RAS

1, 
2, 
3, 
Abstract:
The authors present the results of a comprehensive geomorphological analysis of the mountain relief types in the middle part of the Verkhnyaya Angara basin (lake Baikal region) for geoinformation diagnostics of dangerous gravitational processes. The relevance of the study is due to the increasing importance of the Baikal-Amur Mainline; the novelty lies in the fact that a high-precision plane-and-height assessment of the Baikal basin northern part’s hard-to-reach areas. The physical and geographical characteristics of the studied territory are given, tectonic and geological features of the relief formation are indicated. For the metric assessment and subsequent mapping of the terrain in the Arc GIS software environment, a digital model of the studied territory and raster coverings of morphometric parameters of slope and exposure were created based on isolines and elevation marks of the topographic base scale 1:100000. In the process of analyzing the model and geomorphological decoding of the arch-block mountains, the planned-altitude metric parameters of relief types with their characteristic forms and elements, morphometric properties with determining factors of formation and development of gravitational processes were established. High-mountain erosion-exaration-, denudation-erosion-; medium-mountain erosion-denudation-, denudation-erosion- and low-mountain denudation relief types are distinguished. For geomorphometric analysis and diagnostics of slopes, reference polygons characterizing the types of arch-block mountains relief, possessing certain geophysical properties and features were selected. To visualize each polygon, slope mapping-and-exposure was performed, as well as a satellite image was presented. As a result of the conducted research, a typical set of dangerous gravitational processes was identified for each type of relief, as well as their possible intensity, which can create risks of economic activity in mountainous areas. The results of the study can be used in design work for the modernization of the Baikal-Amur Mainline and the development of new mineral deposit
This work was funded by the Russian Science Foundation, project № 23-27-00261, https://rscf.ru/en/project/23-27-00261/
References: 
1.   Abrosimov A.V., Sizov O.S. Geoprostranstvennoe distancionnoe obespechenie predotvrashcheniya riskov, svyazannyh s termoehroziej v usloviyah Krajnego Severa. Geoprofi, 2013, no. 6, pp. 10–14.
2.   Borisova T. A. Prirodno-antropogennye riski v basseine ozera Baikal. Novosibirsk: Akademicheskoe izd-vo «Geo», 2013, 126 p.
3.   Vyrkin V. B. Sovremennoe jekzogennoe rel'efoobrazovanie kotlovin bajkal'skogo tipa. Irkutsk: Izd-vo IG SO RAN, 1998, 175 p.
4.   Vyrkin V. B. Rel'ef i ekzogennye protsessy Okinskoi kotloviny (Vostochnyi Sayan). Izvestiya Irkutskogo gos. un-ta. Ser.: Nauki o Zemle, 2018, Vol. 23, pp. 43–50.
5.   Gleizer I. V., Kopaneva I. M., Rubleva E. A. Nekotorye aspekty ispol'zovaniya GIS-tekhnologii pri morfometricheskom analize rel'efa. Vestnik Udmurtskogo un-ta, 2006, no. 11, pp. 143–146.
6.   Glotov A. A. Ispol'zovanie TsMR dlya zadach ratsional'nogo prirodopol'zovaniya i monitoringa prirodnykh protsessov. Upravlenie razvitiem territorii, 2013, no. 2, pp. 39–41.
7.   Erunova M. G., Kuznetsova A. S., Shpedt A. A., Yakubailik O. E. Geomorfometricheskii analiz sel'skokhozyaistvennykh territorii na osnove novoi tsifrovoi modeli rel'efa. Dostizheniya nauki i tekhniki APK, 2024, Vol. 38, no. 4, pp. 4–9.
8.   Idrisov I. A., Suleimanov V. K., Cherkashin V. I. Opasnye geologicheskie (prirodnye) protsessy v raione g. Derbent (prichina i sledstvie). Tr. Instituta geologii Dagestanskogo nauchnogo tsentra RAN, 2019, no. 4 (79), pp. 90–99. DOI: 10.33580/2541-9684-2019-63-4-90-99.
9.   Melikhova A. V. Geoinformatsionnyi analiz rel'efa Astrakhanskogo Zavolzh'ya. Prirodnye sistemy i resursy, 2023, Vol. 13, no. 1, pp. 39–43. DOI: 10.15688/nsr.jvolsu.2023.1.6.
10.   Novakovskij B.A., Prasolov S.V., Prasolova A.I. Cifrovye modeli rel'efa real'nyh i abstraktnyh geopolej. M.: Nauchnyj mir, 2003, 111 p.
11.   Opekunova M.Yu., Vanteeva Yu.V., Solodyankina S.V. (2021) Geomorphometric analysis of Olkhon island region’s relief. Geodezia i Kartografia, 82(6), pp. 37-46. (In Russian). DOI: 10.22389/0016-7126-2021-972-6-37-46.
12.   Raimbekov Yu. Kh., Marodaseinov F. O. Opasnye prirodnye protsessy i yavleniya na malykh vodosborakh v basseine reki Gunt (Gorno-Badakhshanskaya avtonomnaya oblast', Tadzhikistan). GeoRisk, 2019, Vol. 13, no. 2, pp. 52–62.
13.   Safarov M. S., Fazylov A. R., Gulaezov M. Sh., Navruzshoev Kh. D. Opasnye prirodnye protsessy ekzogennogo kharaktera basseina reki Zeravshan (Pendzhikent, Tadzhikistan). Endless Light in Science, 2022, no. 5-5, pp. 218–227.
14.   Selezneva A. V., Dedova I. S. Morfogeneticheskii analiz erozionnogo rel'efa Volgogradskogo pravoberezh'ya. Geomorfologiya, 2019, no. 4, pp. 88–101. DOI: 10.31857/S0435-42812019488-101.
15.   Tregub A. I., Zhavoronkin O. V. Morfometriya sovremennoi poverkhnosti i neotektonicheskaya struktura territorii VKM. Vestnik Voronezhskogo un-ta. Ser. geologiya, 2000, 9. pp. 19–26.
16.   Yuferev V. G., Melikhova A. V., Balynova V. V. Geoinformatsionnyi analiz rel'efa Kumo-Manychskoi vpadiny. Prirodnye sistemy i resursy, 2022, Vol. 12, no. 2, pp. 67–76. DOI: 10.15688/nsr.jvolsu.2022.2.9.
17.   (2008) Geomorphometry. Concepts, Software, Applications. Developments in Soil Science. Hengl T., Reuter H. I. (Eds.). Elsevier Science, Amsterdam, 772 p.
18.   Florinsky I. V. (2016) Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Amsterdam: Elsevier Academic Press. 486 p.
19.   Kirkby M. J., Chorley R. J. (1967) Through flow, overland flow and erosion. International Association of Scientific Hydrology Bulletin, no. 12 (3), pp. 5–21. DOI: 10.1080/02626666709493533.
20.   Martz L. W., de Jong E. (1988) CATCH: A FORTRAN program for measuring catchment area from digital elevation models. Computer and Geosciences, no. 14 (5), pp. 627–640.
21.   Pike R. J. (2000) Geomorphometry – diversity in quantitative surface analysis. Progress in Physical Geography: Earth and Environment, no. 24 (1), pp. 1–20. DOI: 10.1177/030913330002400101.
22.   Rasemann S., Schmidt J., Schrott L., Dikau R. (2004) Geomorphometry in mountain terrain. In book: Geographic Information Science and Mountain Geomorphology. Bishop M., Shroder J. (Eds.). Springer, Cham, pp. 101–146.
23.   Skidmore A. K. (1989) A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. International Journal of Geographical Information Systems, no. 3 (4), pp. 323–334.
24.   Speight J. G. (1974) A parametric approach to landform regions. Progress in Geomorphology, no. 7, Institute of British Geographers, London, pp. 213–230.
25.   Zevenbergen L. W., Thorne C. R. (1987) Quantitative аnalysis of land surface topography. Earth Surface Processes and Landforms, no. 12 (1), pp. 47–56. DOI: 10.1002/esp.3290120107.
26.   Zhou Q., Liu X. (2004) Error Analysis on Grid-Based Slope and Aspect Algorithms. Photogrammetric Engineering and Remote Sensing, no. 70 (8), pp. 957–962. DOI: 10.14358/PERS.70.8.957.
Citation:
Borisova T.A., 
Beshentsev A.N., 
Petrov S.A., 
(2024) Plan-altitude parameterization of relief types for dangerous gravitational processes diagnostics. Geodesy and cartography = Geodezia i Kartografia, 85(9), pp. 12-24. (In Russian). DOI: 10.22389/0016-7126-2024-1011-9-12-24
Publication History
Received: 06.03.2024
Accepted: 18.09.2024
Published: 20.10.2024

Content

2024 September DOI:
10.22389/0016-7126-2024-1011-9