ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Gofman-Vellengof B., Morits G. Fizicheskaya geodeziya. Per. s angl. pod red. Yu. M. Neimana. Moskva: Izd-vo MIIGAiK, 2007, 426 p. |
2. Kallan R. Osnovnye kontseptsii neironnykh setei. Per. s angl. A. G. Sivaka. Moskva: Vil'yamc, 2001, 287 p. |
3. Koshlyakov N. S., Gliner E. B., Smirnov M. M. Osnovnye differentsial'nye uravneniya matematicheskoi fiziki. Moskva: Fizmatgiz, 1962, 768 p. |
4. Morits G. Sovremennaya fizicheskaya geodeziya. Moskva: Nedra, 1983, 392 p. |
5. Moritz G. (2001) Theory of Molodensky and GPS. Geodezia i Kartografia, 62(6), pp. 7–17. |
6. Neiman Yu. M., Sugaipova L. S. Reshenie differentsial'nogo uravneniya Laplasa v vide glubokoi neiroseti kak edinyi algoritm priblizhennogo resheniya zadach fizicheskoi geodezii v lokal'nom raione. Izvestia vuzov. Geodesy and Aerophotosurveying, 2023, Vol. 67, no. 1, pp. 104–106. |
7. Neiman Yu. M., Sugaipova L. S., Koneshov V. N., Nepoklonov V. B. O reshenii kraevykh zadach fizicheskoi geodezii v vide glubokikh neirosetei. Geofizicheskie issledovaniya, 2024, Vol. 25, no. 2, pp. 5–19. |
8. Nikolenko S., Kadurin A., Arkhangel'skaya E. Glubokoe obuchenie: pogruzhenie v mir neironnykh setei. SPb.: Piter, 2018, 480 p. |
9. Ogorodova L. V. Normal'noe pole i opredelenie anomal'nogo potentsiala. Moskva: MIIGAiK, 2011, 106 p. |
10. Pavlenko D. Vvedenie v mashinnoe obuchenie i iskusstvennye neironnye seti. URL: https://clck.ru/3GUyJ6 (accessed: 25.01.2025). |
11. Axler S., Shin P. J. (2018) The Neumann problem on ellipsoids. Journal of Applied Mathematics and Computing, no. 57, pp. 261–278. DOI: 10.1007/s12190-017-1105-4. |
12. Backus G. E. (1968) Application of a non-linear boundary-value problem for Laplace's equation to gravity and geomagnetic intensity surveys. The Quarterly Journal of Mechanics and Applied Mathematics, Volume 21, no. 2, pp. 195–221. DOI: 10.1093/qjmam/21.2.195. |
13. Bjerhammar A., Svensson L. (1983) On the geodetic boundary value problem for a fixed boundary surface – a satellite approach. Bulletin Geodesique, no. 57, pp. 382–393. |
14. Heck B. (1989) On the non-linear geodetic boundary value problem for a fixed boundary surface. Bulletin Geodesique, no. 63, pp. 57–67. |
15. Hornik K., Stinchcombe M., White H. (1989) Multilayer feedforward networks are universal approximators. Neural Network, no. 2, pp. 359-366. |
16. Koch K. R., Pope A. J. (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the Earth. Bulletin Geodesique, no. 106, pp. 467–476. |
17. Leshno M., Lin V. Y., Pinkus A., Schocken S. (1993) Multilayer feedforward networks with nonpolynomial activation function can approximate any function. Neural Networks, no. 6, pp. 861–867. |
18. Najafi-Alamdari M., Ardalan A. A., Emadi S.-R. (2012) Ellipsoidal Neumann geodetic boundary-value problem based on surface gravity disturbances: case study of Iran. Studia Geophysica et Geodaetica, no. 56, pp. 153–170. DOI: 10.1007/s11200-010-0098-3. |
19. Raissi M., Perdikaris P., Karniadakis G. E. (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, no. 378, pp. 686–707. DOI: 10.1016/J.JCP.2018.10.045. |
20. Sansò F., Venuti G. (2008) On the explicit determination of stability constants for the linearized geodetic boundary value problems. Journal of Geodesy, no. 82, pp. 909–916. |
21. Yu J., Jekeli C., Zhu M. (2002) The analytical solutions of the Dirichlet and Neumann boundary value problems with ellipsoidal boundary. Journal of Geodesy, no. 76, pp. 653–667. |
22. Zingerle P., Pail R., Gruber T., Oikonomidou X. (2020) The combined global gravity field model XGM2019e. Journal of Geodesy, Volume 94, no. 66, DOI: 10.1007/s00190-020-01398-0. |
(2025) Numerical solution of the Molodensky boundary value problem with a fixed boundary. Geodesy and cartography = Geodezia i Kartografia, 86(2), pp. 2-14. (In Russian). DOI: 10.22389/0016-7126-2025-1016-2-2-14 |