1 Omirzhanova Zh.T.
2 Urazaliyev A.S.
3 Shoganbekova D.A.

Kazakh Leading Academy of Architecture and Civil Engineering (KazGASA)


Kazakh National Technical University named after K.I. Satpayev

The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30°-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 45° and above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year.
1.   Dolgih N.A., Danekin A.I., Nosenko O.A. Ispol'zovanie dannyh SSM/I dlya opredeleniya granicy i vysoty sezonnogo pokrova s cel'yu monitoringa opasnyh gidrologicheskih processov na rekah Evropejskoj chasti Rossii. URL: http://www.iki.rssi.ru/earth/trudi/1-08.pdf
2.   Kak rabotaet instrument «Uklon» (Slope). URL: http://resources.arcgis.com/ru/help/main/10.1/index.html#//00q90000001r000000
3.   Mokrov E.G., Solov'ev A.Yu. Ispol'zovanie modeli razvitiya snezhnoj tolshchi «SNOWPACK» dlya opredeleniya parametrov lavinoobrazovaniya. Kriosfera Zemli, 2010, Vol. ХIV, no. 2, pp. 79–86. URL: http://www.izdatgeo.ru
4.   Paramonov D.A. Geoinformacionnoe obespechenie krupnomasshtabnogo kartografirovaniya selej. Geoinformatika, 2005, no. 4, pp. 9–15.
5.   Silaev A.V., Sorokovoi A.A. (2012) GIS analysis of cultivated areas of Tunka hollow. Geodezia i Kartografia, (11), pp. 53-57.
6.   Sedova A.S., Seliverstov Yu.G., Voronina E.A., Tumas'eva V.A., Klimenko E.S. Cifrovaya model' rel'efa kak osnova dlya issledovaniya snezhnyh lavin. Lyod i Sneg, 2010, 2 (110). pp. 43–49.
7.   Solov'ev A.S., Kalach A.V., Psarev S.A. Obrazovanie snezhnoj laviny pri tayanii snezhnogo pokrova na sklone: Internet-zhurnal «Tekhnologii tekhnosfernoj bezopasnosti». 2012, 4 (44). URL: http://www.ipb.mos.ru/ttb
8.   Klimenko E. (2013) Verification of SNOWPACK model in the Western Caucasus, Russia, for spatial assessment of snow cover stability. Proceedings of International Snow Science Workshop, Grenoble, pp. 170–176.
9.   Martinec J., Rango A. Snowmelt Runoff Model (SRM) User’s Manual. 1998,
10.   Nagornyik K. Kosmicheskij termometr. URL: http://esri-cis.ru/blogs/?page=post&blog=arcgis&post_id=kosmicheskiy-termometr
Omirzhanova Zh.T., 
Urazaliyev A.S., 
Shoganbekova D.A., 
(2015) Mapping the avalanche places in the mountainous resort area of Trans-Ili Alatau. Geodesy and cartography = Geodezia i Kartografia, (11), pp. 37-43. (In Russian). DOI: 10.22389/0016-7126-2015-905-11-37-43