DOI: 
10.22389/0016-7126-2017-930-12-39-43
1 Savinikh V.P.
2 Maiorov A.A.
3 Materuhin A.V.
Year: 
№: 
930
Pages: 
39-43

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
2, 
3, 
Abstract:
The article is a brief summary of current research results of the authors in the field of spatial modeling of air pollution based on spatio-temporal data streams from geosensor networks. The urban environment is characterized by the presence of a large number of different sources of emissions and rapidly proceeding processes of contamination spread. So for the development of an adequate spatial model is required to make measurements with a large spatial and temporal resolution. It is shown that geosensor network provide researchers with the opportunity to obtain data with the necessary spatio-temporal detail. The article describes a prototype of a geosensor network to build a detailed spatial model of air pollution in a large city. To create a geosensor in the prototype of the system, calibrated gas sensors for a nitrogen dioxide and carbon monoxide concentrations measurement were interfaced to the module, which consist of processing unit and communication unit. At present, the authors of the article conduct field tests of the prototype developed.
The reported study was funded by RFBR and Russian Geographical Society according to the research project № 17-05-41156
References: 
1.   Dyshlyuk S.S., Nikolaeva O.N., Romashova L.A. (2016) On the use of environmental maps in creating environmental companty spatial data infrastructure. Geodesy and Cartography, no. 4, pp. 18–25. (In Russian). DOI: 10.22389/0016-7126-2016-910-4-18-25.
2.   Materuhin A.V. (2017) Problematika sozdanija GIS na osnove sistem upravlenija potokami dannyh Problems in the development of GIS based on data stream management systems. Geodesy and Cartography, Vol. 78, no. 4, pp. 44-47. (In Russian). DOI: 10.22389/0016-7126-2017-922-4-44-47.
3.   Abadi D.J., Carney D., Çetintemel U., Cherniack M., Convey C., Lee S., Stonebraker M., Tatbul N., Zdonik S. (2003) Aurora: a new model and architecture for data stream management. The VLDB Journal, Volume 12, no. 2, pp. 120–139. DOI: 10.1007/s00778-003-0095-z.
4.   Gong J., Geng J., Chen Z. (2015) Real-time GIS data model and sensor web service platform for environmental data management. International Journal of Health Geographics, Volume 14, no. 2, DOI: 10.1186/1476-072X-14-2.
5.   Liu J.-H., Chen Y.-F., Lin T.-S., Chen C.-P. (2012) Air quality monitoring system for urban areas based on the technology of wireless sensor network. International journal on smart sensing and intelligent systems, Volume 5, no. 1, pp. 191–214. DOI: 10.21307/ijssis-2017-477.
6.   Lo Re G., Peri D., Vassallo S.D. (2014) Urban Air Quality Monitoring Using Vehicular Sensor Networks. In: Gaglio S., Lo Re G. (eds) Advances onto the Internet of Things. Advances in Intelligent Systems and Computing, 260. Springer, Cham. DOI: 10.1007/978-3-319-03992-3_22.
7.   Magno M., Jelicic V., Chikkadi K., Roman C., Hierold C., Bilas V., Benini L. (2016) Low-power gas sensing using carbon nanotubes in wearable devices. IEEE Sensors Journal, Volume 16, no. 23, pp. 8329–8337. DOI: 10.1109/JSEN.2016.2606087.
8.   Maiorov A. A., Materukhin A. V. (2017) Analysis of Existing Technologies Used to Process Streams of Spatio-Temporal Data for Modern Information Measurement Systems. Measurement Techniques, Volume 60, no. 4, pp. 350–354. DOI: 10.1007/s11018-017-1200-9.
9.   Materukhin A., Shakhov V., Sokolova O. (2017) An efficient method for collecting spatio-temporal data in the WSN using mobile sinks. IEEE Conference Publications. Engineering, Computer and Information Sciences (SIBIRCON), International Multi-Conference on.. pp. 118–120. DOI: 10.1109/SIBIRCON.2017.8109851.
10.   Arasu A., Babcock B., Babu S., Datar M., Ito K., Nishizawa I., Rosenstein J., Widom J. (2003) STREAM: the Stanford stream data manager (demonstration description). In Proceedings of the 2003 ACM SIGMOD international conference on Management of data (SIGMOD ‘03), ACM, New York, USA, pp. 665–665. DOI: 10.1145/872757.872854.
11.   Chandrasekaran S., Cooper O., Deshpande A., Franklin M. J., Hellerstein J. M., Hong W., Krishnamurthy S., Madden S.R., Reiss F., Shah M.A. (2003) TelegraphCQ: continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data (SIGMOD ‘03), ACM, New York, USA, pp. 668–668. DOI: 10.1145/872757.872857.
12.   Mead M. I., Popoola O. A. M., Stewart G. B., Landshoff P., Calleja M., Hayes M., Baldovi J. J., McLeod M. W., Hodgson T. F., Dicks J. et al. (2013) The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmospheric Environment, no. 70, pp. 186–203. DOI: 10.1016/j.atmosenv.2012.11.060.
Citation:
Savinikh V.P., 
Maiorov A.A., 
Materuhin A.V., 
(2017) Postroenie prostranstvennoj modeli zagryazneniya vozduha na osnove ispol'zovaniya potokov dannyh ot setej geosensorov [Spatial modeling of air pollution based on data streams from geosensor networks]. Geodesy and Cartography = Geodezia i Kartografia, 78, 12, pp. 39-43 . (In Russian). DOI: 10.22389/0016-7126-2017-930-12-39-43
Publication History
Received: 24.11.2017
Accepted: 20.12.2017
Published: 20.01.2018

Content

2017 December DOI:
10.22389/0016-7126-2017-930-12

QR-code page

QR-код страницы