1 Chernov I.V.

Military Space academy named after A.F. Mozhaisky (MSА named after A.F. Mozhaisky)

The article considers the possibility of rapid determination of azimuth directions with high accuracy. It is shown that the gyroscopic method and the relative method of space geodesy with high efficiency, allows to obtain the azimuths of the directions with high precision and Autonomous. To achieve high accuracy of orientation with the use of satellite geodetic equipment are encouraged to design observations with regard to the length and azimuth direction, and time of observation. This will allow to abandon the use of the original geodetic framework that will increase efficiency. To improve the reliability of the obtained azimuth directions, it is proposed to integrate the gyroscopic observations and satellite observations without using the original geodesic Foundation. Considered by the joint processing of satellite and gyro measurements as a dual and unequal dimensions. In conclusion, the a priori calculation of observing time and accuracy of the resulting values of azimuth directions.
1.   Astapovich A.V. Teoriya matematicheskoj obrabotki geodezicheskih izmerenij [The theory of mathematical processing of geodetic measurements]. – Ch. 2: Teaching aid. SPb.: SPVVTKU, 1997, 199 p.
2.   Bol’shakov V.D. Teoriya oshibok nablyudenij [The theory of errors of observations]. M.: Nedra, 1983, 289 p.
3.   Gajdaev P.A., Bol'shakov V.D. Teoriya matematicheskoj obrabotki geodezicheskih izmerenij. Izd. 2-e, pererab. i dop.. M.: Nedra, 1977, 367 p.
4.   Demidov O.V. Zadacha tesnoj integracii sistem GLONASS i GPS s inercial’nymi navigacionnymi sistemami raznyh klassov tochnosti [The task of integration of GLONASS and GPS with inertial navigation systems of different accuracy classes]: Dis. na soisk. uch. st. kand. fiz. M.: MGU, 2009, 139 p.
5.   Larin D.A. (1964) To the question of the adjustment of astronomic-geodetic network. Geodezia i Kartografia, (8), pp. 3–12.
6.   Parusnikov N.A., Golovan A.A. Matematicheskie osnovy navigacionnyh sistem. Ch. I. Matematicheskie modeli inercial’noj navigacii [Mathematical fundamentals of navigation systems. Part I. Mathematical models of inertial navigation.]. M.: Izd-vo MG, 2007, 110 p.
7.   Chernov I. V. Issledovanie dostigaemyh tochnostej orientirovaniya giroteodolitnymi komplektami [The study achieved accuracies of orientation gyrotheodolite sets]. Naukoyomkie tekhnologii v kosmicheskih issledovaniyah Zemli, 2016, Vol. 8, no. 6, pp. 12–16.
8.   Chernov I.V., Alekseev V.F., Yakovlev A.I. Opredelenie azimutov s primeneniem otnositel’nogo metoda kosmicheskoj geodezii bez ispol’zovaniya iskhodnoj geodezicheskoj osnovy [Determination of azimuths with the use of a relative method of space geodesy without using the original geodesic Foundation]. Informaciya i Kosmos, 2016, 3. pp. 103–107.
9.   Cannon M.E., Lachapelle G., Nayak R., Salychev O., Voronov V. (2001) Low Cost INS/GPS Integration: Concepts and Testing. The Journal of Navigation, Royal Institute of Navigation, no. 54, pp. 119–13.
10.   Phillips R.E., Schmidt G.T. (1996) GPS/INS Integration. In: System Implications and Innovative Applications of Satellite Navigation. AGARD Lecture Series 207, no. 9, Canada Communication Group, Quebec, pp. 1–18.
Chernov I.V., 
(2017) The model is integrated satellite gyroscopic system operational determination of high-precision bearing. Geodesy and cartography = Geodezia i Kartografia, 78(7), pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2017-925-7-2-8
Publication History
Received: 31.03.2017
Accepted: 02.05.2017
Published: 18.08.2017


2017 July DOI: