1 Sizov O.S.
2 Zubkova K.I.

Russian Space Systems (Spacecorp), JSC


Research Center for Earth Operative Monitoring

Basing on the Global Surface Water data set on the Earth’s inland waters, a description of the calculation method for the density of the lakes is provided. The technique is based on the calculation of the water surface area in a local neighborhood by the sliding window method and on the sequential application of a number of standard geospatial analysis operations. The method allows obtaining cartograms of surface-grading with a resolution of 200 to 10 000 m in any area. Using the example of West Siberian Plain, the heterogeneity of the lakes’ spatial distribution is assessed. On the basis of comparison with old results (received 40 years ago), we can distinguish the general trend of dewatering, which is manifested for off-grained back-ground areas in reducing the share of lakes from 2,2 to 1,71 %. The analysis of detailed cartograms at the 1000 and 2500 m resolution allows correcting the boundaries of large geomorphological elements, such as blowing corridors, hollows of glacier water, and areas with the highest ice cover glaciation.
This work was supported by a grant from the Russian Foundation for Basic Research and the Government of the Yamalo-Nenets Autonomous District, No. 16-45-890529 p_a.
1.   Atlas Tjumenskoj oblasti. Pod red. E. A. Ogorodnova. Moskva; Tjumen': GUGK, 1971, 1. 171 p.
2.   Atlas Yamalo-Nenetskogo avtonomnogo okruga. Omsk: Omskaya kartograficheskaya fabrika, 2004, 304 p.
3.   Beletskaya N. P. Geneticheskaya klassifikatsiya ozjornyh kotlovin Zapadno-Sibirskoj ravniny. Geomorfologiya, 1987, no. 1, pp. 50–58.
4.   Bryksina N. A., Polishchuk Ju. M. Analiz izmeneniya chislennosti termokarstovyh ozjor v zone mnogoletnej merzloty Zapadnoj Sibiri na osnove kosmicheskih snimkov. Kriosfera Zemli, 2015, Vol. XIX, no. 2, pp. 114–120.
5.   Viktorov A. S., Kapralova V. N., Trapeznikova O. N. Matematicheskaya model' morfologicheskoj struktury ozjorno-termokarstovyh ravnin v izmenyajushchihsya klimaticheskih usloviyah. Kriosfera Zemli, 2015, Vol. XIX, no. 2, pp. 26–34.
6.   Zemtsov A. A. Geomorfologiya Zapadno-Sibirskoj ravniny (severnaya i tsentral'naya chast'). Tomsk: Izd-vo Tomsk. un-ta, 1976, 342 p.
7.   Zemtsov A. A., Mizerov B. V., Nikolaev V. A., Suhodrovskij V. L., Beletskaya N. P., Gritsenko A. G., Pil'kevich I. V., Sinel'nikov D. A. Rel'ef Zapadno-Sibirskoj ravniny. Novosibirsk: Nauka, 1988, 192 p.
8.   Karta chetvertichnyh obrazovanij masshtaba 1 : 2 500 000 territorii Rossijskoj Federatsii. Poyasnitel'naya zapiska. URL:
9.   Kravtsova V. I., Rodionova T. V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovyh ozjor v razlichnyh rajonah kriolitozony Rossii po kosmicheskim snimkam. Kriosfera Zemli, 2016, Vol. XX, no. 1, pp. 81–89.
10.   Meshcheryakov Ju. A. Rel'ef SSSR (Morfostruktura i morfoskul'ptura). Moskva: Mysl', 1972, 520 p.
11.   Polishchuk Ju. M., Kupriyanov M. A., Bryksina N. A. Distantsionnoe issledovanie dinamiki ploshchadi ozjor v sploshnoj kriolitozone Sibiri. Geografiya i prirodnye resursy, 2017, no. 3, pp. 164–170. DOI: 10.21782/GiPR0206-1619-2017-3(164-170).
12.   Suhorukova S. S., Kostjuk M. A., Podsosova L. L., Babushkin A. E., Zol'nikov I. D., Abramov S. A., Goncharov S. V. Moreny i dinamika oledenenij Zapadnoj Sibiri. Tr. IGiG SO AN SSSR, Novosibirsk: Nauka, 1987, 672. 159 p.
13.   Discrete Global Grid Systems DWG. URL: (accessed: 06.12.2018).
14.   Feng M., Sexton J. O., Channan S., Townshend J. R. (2015) A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm. International Journal of Digital Earth, no. 9, pp. 113–133. DOI: 10.1080/17538947.2015.1026420.
15.   Global Surface Water Explorer. URL: (accessed: 06.12.2018).
16.   Gong P., Wang J., Yu L., Chen J. (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, Volume 7, no. 34 , pp. 2607–2654. DOI: 10.1080/01431161.2012.748992.
17.   Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, July, pp. 18–27. DOI: 10.1016/j.rse.2017.06.031.
18.   Haklay M., Weber P. (2008) OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, Volume 4, no. 7, pp. 12–18. DOI: 10.1109/MPRV.2008.80.
19.   Hansen M. C., Loveland T. R. (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, no. 122, pp. 66–74. DOI: 10.1016/j.rse.2011.08.024.
20.   Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V. (2013) High-resolution global maps of 21st-century forest cover change. Science, Volume 6160, no. 342 , pp. 850–853. DOI: 10.1126/science.1244693.
21.   Lehner B., Döll P. (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, no. 296, pp. 1–22. DOI: 10.1016/j.jhydrol.2004.03.028.
22.   Pekel J.-F., Cottam A., Gorelick N., Belward A. S. (2016) High-resolution mapping of global surface water and its long-term changes. Nature, Volume 7633, no. 540 , pp. 418–422. DOI: 10.1038/nature20584.
23.   Prigent C., Papa F., Aires F., Jimenez C., Rossow W. B., Matthews E. (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophysical Research Letters, L08403. no. 39 (8), DOI: 10.1029/2012GL051276.
24.   Raup B. H., Kääb A., Kargel J. S., Bishop M. P., Hamilton G., Lee E., Paul F., Rau F., Soltesz D., Khalsa S. J. S., Beedle M., Helm Ch. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers & Geosciences, no. 33, pp. 104–125. DOI: 10.1016/j.cageo.2006.05.015.
25.   Subin Z. M., Riley W. J., Mironov D. (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, Volume 1, no. 4 , pp. 183–204. DOI: 10.1029/2011ms000072.
26.   Takaku J., Tadono T., Tsutsui K. (2014) Generation of High Resolution Global DSM from ALOS PRISM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, pp. 243–248.
27.   Verpoorter C., Kutser T., Seekell D. A., Tranvik L. J. (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, no. 41, pp. 6396–6402. DOI: 10.13140/RG.2.1.2296.9360.
28.   Yamazaki D., Trigg M. A., Ikeshima D. (2015) Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sensing of Environment, no. 171, pp. 337–351. DOI: 10.1016/j.rse.2015.10.014.
Sizov O.S., 
Zubkova K.I., 
(2018) Assessing density of the lakes in West Siberian Plain basing on the Global Surface Water data. Geodesy and cartography = Geodezia i Kartografia, 79(12), pp. 8-21. (In Russian). DOI: 10.22389/0016-7126-2018-942-12-8-21
Publication History
Received: 04.07.2018
Accepted: 25.10.2018
Published: 20.01.2019


2018 December DOI:

QR-code page

QR-код страницы