ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Atlas Tjumenskoj oblasti. Pod red. E. A. Ogorodnova. Moskva; Tjumen': GUGK, 1971, 2 Vol. 1, 181 p. |
2. Atlas Yamalo-Nenetskogo avtonomnogo okruga. Omsk: Omskaya kartograficheskaya fabrika, 2004, 304 p. |
3. Beletskaya N. P. Geneticheskaya klassifikatsiya ozjornyh kotlovin Zapadno-Sibirskoj ravniny. Geomorfologiya, 1987, no. 1, pp. 50–58. |
4. Bryksina N. A., Polishchuk Ju. M. Analiz izmeneniya chislennosti termokarstovyh ozjor v zone mnogoletnej merzloty Zapadnoj Sibiri na osnove kosmicheskih snimkov. Kriosfera Zemli, 2015, Vol. XIX, no. 2, pp. 114–120. |
5. Viktorov A. S., Kapralova V. N., Trapeznikova O. N. Matematicheskaya model' morfologicheskoj struktury ozjorno-termokarstovyh ravnin v izmenyajushchihsya klimaticheskih usloviyah. Kriosfera Zemli, 2015, Vol. XIX, no. 2, pp. 26–34. |
6. Zemtsov A. A. Geomorfologiya Zapadno-Sibirskoj ravniny (severnaya i tsentral'naya chast'). Tomsk: Izd-vo Tomsk. un-ta, 1976, 342 p. |
7. Zemtsov A. A., Mizerov B. V., Nikolaev V. A., Suhodrovskij V. L., Beletskaya N. P., Gritsenko A. G., Pil'kevich I. V., Sinel'nikov D. A. Rel'ef Zapadno-Sibirskoj ravniny. Novosibirsk: Nauka, 1988, 192 p. |
8. Karta chetvertichnyh obrazovanij masshtaba 1 : 2 500 000 territorii Rossijskoj Federatsii. Poyasnitel'naya zapiska. URL: www.vsegei.ru/ru/info/quaternary-2500/Quart_ObZap.pdf |
9. Kravtsova V. I., Rodionova T. V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovyh ozjor v razlichnyh rajonah kriolitozony Rossii po kosmicheskim snimkam. Kriosfera Zemli, 2016, Vol. XX, no. 1, pp. 81–89. |
10. Meshcheryakov Ju. A. Rel'ef SSSR (Morfostruktura i morfoskul'ptura). Moskva: Mysl', 1972, 520 p. |
11. Polishchuk Ju. M., Kupriyanov M. A., Bryksina N. A. Distantsionnoe issledovanie dinamiki ploshchadi ozjor v sploshnoj kriolitozone Sibiri. Geografiya i prirodnye resursy, 2017, no. 3, pp. 164–170. DOI: 10.21782/GiPR0206-1619-2017-3(164-170). |
12. Suhorukova S. S., Kostjuk M. A., Podsosova L. L., Babushkin A. E., Zol'nikov I. D., Abramov S. A., Goncharov S. V. Moreny i dinamika oledenenij Zapadnoj Sibiri. Tr. IGiG SO AN SSSR, Novosibirsk: Nauka, 1987, 672. 159 p. |
13. Discrete Global Grid Systems DWG. URL: http://www.opengeospatial.org/projects/groups/dggsdwg (accessed: 06.12.2018). |
14. Feng M., Sexton J. O., Channan S., Townshend J. R. (2015) A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm. International Journal of Digital Earth, no. 9, pp. 113–133. DOI: 10.1080/17538947.2015.1026420. |
15. Global Surface Water Explorer. URL: https://global-surface-water.appspot.com (accessed: 06.12.2018). |
16. Gong P., Wang J., Yu L., Chen J. (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, Volume 7, no. 34 , pp. 2607–2654. DOI: 10.1080/01431161.2012.748992. |
17. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, July, pp. 18–27. DOI: 10.1016/j.rse.2017.06.031. |
18. Haklay M., Weber P. (2008) OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, Volume 4, no. 7, pp. 12–18. DOI: 10.1109/MPRV.2008.80. |
19. Hansen M. C., Loveland T. R. (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, no. 122, pp. 66–74. DOI: 10.1016/j.rse.2011.08.024. |
20. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V. (2013) High-resolution global maps of 21st-century forest cover change. Science, Volume 6160, no. 342 , pp. 850–853. DOI: 10.1126/science.1244693. |
21. Lehner B., Döll P. (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, no. 296, pp. 1–22. DOI: 10.1016/j.jhydrol.2004.03.028. |
22. Pekel J.-F., Cottam A., Gorelick N., Belward A. S. (2016) High-resolution mapping of global surface water and its long-term changes. Nature, Volume 7633, no. 540 , pp. 418–422. DOI: 10.1038/nature20584. |
23. Prigent C., Papa F., Aires F., Jimenez C., Rossow W. B., Matthews E. (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophysical Research Letters, L08403. no. 39 (8), DOI: 10.1029/2012GL051276. |
24. Raup B. H., Kääb A., Kargel J. S., Bishop M. P., Hamilton G., Lee E., Paul F., Rau F., Soltesz D., Khalsa S. J. S., Beedle M., Helm Ch. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers & Geosciences, no. 33, pp. 104–125. DOI: 10.1016/j.cageo.2006.05.015. |
25. Subin Z. M., Riley W. J., Mironov D. (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, Volume 1, no. 4 , pp. 183–204. DOI: 10.1029/2011ms000072. |
26. Takaku J., Tadono T., Tsutsui K. (2014) Generation of High Resolution Global DSM from ALOS PRISM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, pp. 243–248. |
27. Verpoorter C., Kutser T., Seekell D. A., Tranvik L. J. (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, no. 41, pp. 6396–6402. DOI: 10.13140/RG.2.1.2296.9360. |
28. Yamazaki D., Trigg M. A., Ikeshima D. (2015) Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sensing of Environment, no. 171, pp. 337–351. DOI: 10.1016/j.rse.2015.10.014. |
(2018) Assessing density of the lakes in West Siberian Plain basing on the Global Surface Water data. Geodesy and cartography = Geodezia i Kartografia, 79(12), pp. 8-21. (In Russian). DOI: 10.22389/0016-7126-2018-942-12-8-21 |