UDC: 
DOI: 
10.22389/0016-7126-2018-931-1-14-19
1 Petrosyan H.S.
2 Hayrapetyan Ye.H.
Year: 
№: 
931
Pages: 
14-19

National University of Architecture and Construction of Armenia

1, 
2, 
Abstract:
In this paper, we consider the possibilities and ways to improve the accuracy of linear measurements and reduce modulation power, as well as their implementation in the construction of a new high-precision laser rangefinder. To do this, it is necessary to implement the transition to a new method of the modulation method that occurs when the operating point of the light modem goes over to the average linear portion of the modulation characteristic of light (MHS). In this case, the dependence of the amplitude-modulated reception light on the distance is characterized by a first-order Bessel function J1 (x) instead of J0 (x), which takes place at the compensation method of the extremum. In addition, such a transition leads not only to a decrease in modulation power, but also to nonlinear distortions and spreads of the modulation phase. All this leads to the fact that there is an increase in the accuracy of linear measurements by almost an order of magnitude. The phase error m? of linear measurements is estimated at hundredths of a millimeter, 0,015–0,02 mm. However, for the implementation of this method, there are difficulties associated with the process of phase detection of the receiving modulated light. There are no photoelectric multipliers operating at a frequency of 600–1200 MHz. The proposed work provides a schematic diagram of the heterodyne laser range finder, which makes it possible to realize the operation of a light-range meter with circular polarization of light by using an auxiliary generator-heterodyne.
References: 
1.   Beglaryan A. G., Gyunashyan K. S. Sposob lineynykh izmereniy s fotosmeshcheniyem. Trudy mezhdunarodnogo seminara «Problemy tekhnologii i sistemy izmereniy v geodezii, kadastre i geodinamike», Yerevan, 1997, pp. 23–25.
2.   Beglaryan A. G., Hayrapetyan Ye. A., Gunashyan K. S., Khachatryan K. Kh. Ob osnove svetodal’nomera ‘‘0’’ razryada. Izvestiya vuzov. Geodezija i aerofotosˮyemka, 2005, no. 2, pp. 109–117.
3.   Vainberg V.Ya., Shirov F.V. (1983) Research of models of led-meter type DVSD-1200 with mirror-collimating system. Geodesy and cartography, 44(4), pp. 17–22.
4.   Movsesyan R. A., Gyunashyan K. S., Mehrabyan Kh. S., Weinberg V. Ya. Rezul’taty issledovaniy maketa svetodal’nomera DVSD-1200M. Izvestiya vuzov. Geodezija i aerofotosˮyemka, 1981, no. 1, pp. 107–113.
5.   Movsesyan R. A., Hambartsumyan F. B., Shekoyan A. D., Sargsyan O. G., Safaryants S. A. Sverkhvysokochastotnyy svetodal’nomer s preobrazovaniyem chastoty v kristallicheskom modulyatore. Mezhvuzovskij sbornik nauchnyh trudov ErPI. Problemy inzhenernoj geodezii, 1987, pp. 68–73.
6.   Mustel E. R., Parygin V. N. Metody modulyatsii i skanirovaniya sveta. Moscow: Nedra, 1970, 296 p.
7.   Spravochnik geodezista. Kn. 2.. Pod redakciej V. D. Bol’shakova, G. P. Levchuka, 3-e izd.. Moscow: Nedra, 1985, 440 p.
8.   Beglaryan A. G., Gyunashyan K. S., Hayrapetyan Ye. H. (2011) High precision light range-finder DVCD-1200 for linear comparator. Proceedings of 3rd International Conference. Contemporary Problems in Architecture and Constructionon (November 20–24, 2011). China, Beijing.Institution of Engineering and Technology. pp. 5–8.
9.   Ruger J. M., Ciddor P. E. (1987) Short range performance of precision distance meters “Kern” Mekometer ME-3000 and “Com-Rad” Geomensor GR-204 DME. The Australian surveyer, Iuna, Volume 33, no. 6, pp. 480–492.
Citation:
Petrosyan H.S., 
Hayrapetyan Ye.H., 
(2018) Heterodyne light rangefinder. Geodesy and cartography = Geodezia i Kartografia, 79(1), pp. 14-19. (In Russian). DOI: 10.22389/0016-7126-2018-931-1-14-19
Publication History
Received: 18.08.2017
Accepted: 01.12.2017
Published: 20.02.2018

Content

2018 January DOI:
10.22389/0016-7126-2018-931-1