1 Nyrtsov M.V.

Lomonosov Moscow State University (MSU)

For most small bodies of the Solar System shapes the International Astronomical Union recommends to use a triaxial ellipsoid. Today almost all major classes of cartographic projections for the triaxial ellipsoid have been developed. They require systematization, classification and additional research. The archives of libraries accumulated a significant list of paper maps of the Soviet times which are compiled in projections developed in our country. It is necessary to implement those projections in the PROJ.4 library used by GIS. Distortions in map projections can be defined as deformation of a cell. If we imagine that the sphere is covered with a net of regular hexagons then it is possible to estimate distortions in the projection by their deformation on the plane. Now the majority of cartographers use online calculators to define the values required for mathematical cartography. Programs are usually written in JavaScript and require the user to only enter the initial data. These are only some of the problems facing modern mathematical cartography.
1.   Geodeziya, kartografiya, geoinformatika, kadastr: Jentsiklopediya v 2 t.. Pod obshch. red. A. V. Borodko, V. P. Savinyh. Moskva: Geodezkartizdat, 2008, Vol. Т. 1: А – М, 496 p.
2.   Ginzburg G.A., Salmanova T.D. Atlas dlya vybora kartograficheskih proekcij. Tr. CNIIGAiK, M.: Geodezizdat, 1957, 110. 239 p.
3.   Dopolnenie k Atlasu dlya vybora kartograficheskih proektsij. Pod red. V. M. Boginskogo. Moskva: ONTI TsNIIGAiK, 1975, 108 p.
4.   Kartograficheskie proektsii trjohosnogo jellipsoida. . URL: http://geocnt.geonet.ru/ru/3_axial (accessed: 04.07.2018).
5.   Nyrtsov M. V., Flejs M. Je., Borisov M. M. Kartografirovanie asteroida 433 Jeros v ravnopromezhutochnyh vdol' meridianov tsilindricheskoj i azimutal'noj proektsiyah trjohosnogo jellipsoida. Izv. vuzov. Geodeziya i ajerofotos#jomka, 2012, no. 1, pp. 54–61.
6.   Serapinas B.B. Matematicheskaya kartografiya: Ucheb. posobie dlya vuzov. M.: Izd. centr «Akademiya», 2005, 336 p.
7.   Flejs M. Je., Nyrtsov M. V., Borisov M. M. Issledovanie svojstva ravnougol'nosti tsilindricheskih proektsij trjohosnogo jellipsoida. Doklady Akademii nauk, 2013, Vol. 451, no. 3, pp. 336–338.
8.   Battersby S., Strebe D., Finn M. (2017) Shapes on a plane: evaluating the impact of projection distortion on spatial binning. Cartography and Geographic Information Science, Volume 44, no. 5, pp. 410–421. DOI: 10.1080/15230406.2016.1180263.
9.   International Association of Oil & Gas Producers. Wikipedia: The Free Encyclopedia. URL: https://en.wikipedia.org/wiki/International_Association_of_Oil_%26_Gas_Producers#European_Petroleum_Survey_Group (accessed: 04.07.2018).
10.   Nyrtsov M. V., Fleis M. E., Borisov M. M., Stooke P. J. (2017) Conic projections of the triaxial ellipsoid: the projections for regional mapping of celestial bodies. Cartographica, Volume 52, no. 4, pp. 322–331. DOI: 10.5194/ica-proc-1-84-2018.
11.   Nyrtsov M. V., Fleis M. E., Borisov M. M., Stooke P. J. (2015) Equal-area projections of the triaxial ellipsoid: First time derivation and implementation of cylindrical and azimuthal projections for small solar system bodies. Cartographic Journal, Volume 52, no. 2, pp. 114–124.
12.   Nyrtsov M., Fleis M., Borisov M., Stooke P. (2014) Jacobi Conformal Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial Bodies. Cartography from Pole to Pole. Lecture Notes in Geoinformation and Cartography. Berlin: Springer-Verlag. pp. 235–246. DOI: 10.1007/978-3-642-32618-9_17.
13.   PROJ.4. Wikipedia: The Free Encyclopedia. URL: https://en.wikipedia.org/wiki/PROJ.4 (accessed: 04.07.2018).
14.   Projection face. URL: http://bl.ocks.org/awood-ruff/9216081 (accessed: 04.07.2018).
15.   Projections and Coordinate Systems for the modern mapper. Created by Mike Foster for Maptime Boston. URL: http://mjfoster83.github.io/projections/#/ (accessed: 04.07.2018).
Nyrtsov M.V., 
(2019) Mathematical cartography today. Geodesy and cartography = Geodezia i Kartografia, 943(1), pp. 52-57. (In Russian). DOI: 10.22389/0016-7126-2019-943-1-52-57
Publication History
Received: 30.08.2018
Accepted: 01.11.2018
Published: 20.02.2019


2019 January DOI:

QR-code page

QR-код страницы