UDC: 
DOI: 
10.22389/0016-7126-2020-955-1-19-25
1 Babashkin N.M.
2 Kadnichanskiy S.A.
3 Nekhin S.S.
Year: 
№: 
955
Pages: 
19-25

Center of Geodesy, Cartography and SDI

1, 
3, 

Geoscan, ltd

2, 
Abstract:
During the recent decade, unmanned aerial vehicles (UAV) have been widely implemented in practice of the aerial survey for the purposes of inventory and mapping. This led to a variety of aerial survey results in terms of both aerial survey parameters and accuracy. Under these conditions, the task of assessing the accuracy of the final product obtained from aerial photographs with a UAV, for example, an orthophoto or a digital elevation model becomes urgent. The Federal State Budgetary Institution “Federal Scientific-Technical Center of Geodesy, Cartography and Spatial Data Infrastructure”, having a metrological service accredited by Rosstandart for the right to conduct metrological certification of measurement methods and metrological examination of documents, makes research tests of hardware and software for digital aerial survey and photogrammetric processing, which determine the values of metrological qualities of hardware and software complexes. The authors present the results of such tests as applied to hardware-andsoftware complexes based on the Geoscan 101 UAV and the Geoscan 201 UAV equipped with Sony DSC RX-1 and Sony DSC-RX1RM2 cameras. The accuracy indicators were obtained for orthophotos, digital surface and relief models, coordinates of targeted and non targeted points of land boundaries and building contours for all land categories and permitted uses of land parcels in accordance with the requirements of the Order of the Ministry of Economic Development of the Russia from 01.03. 2016 No 90.
References: 
1.   Anikeeva I.A., Kadnichanskiy S.A. (2017) Evaluation of the actual resolution of digital aerial and satellite imagery using an edge profile curve. Geodezia i Kartografia, 78(6), pp. 25-36. (In Russian). DOI: 10.22389/0016-7126-2017-924-6-25-36.
2.   Beregovoi D.V., Mustafin M.G. (2018) Automated method of а topographic plan creation based on survey from a drone. Geodezia i Kartografia, 79(9), pp. 30-36. (In Russian). DOI: 10.22389/0016-7126-2018-939-9-30-36.
3.   Inozemtsev D. P. Bespilotnye letatel'nye apparaty: teoriya i praktika. – Ch. 2. Model' obrabotki aerofotosnimkov v srede Agisoft PhotoScan. Avtomatizirovannye tekhnologii izyskanii i proektirovaniya, 2013, no. 3(50), pp. 48–51.
4.   Lapteva M. I., Maslyanko V. Ya., Finazhin D. N., Chizhov M. N. Ispol'zovanie dannykh DZZ s primeneniem aerofotos"emochnogo kompleksa GeoScan’101 v SAPR AutoCAD Civil 3D (opyt raboty na ugol'nykh razrezakh SUEK). Avtomatizatsiya v promyshlennosti, 2014, no. 9, pp. 13–17.
5.   Soloshchenko F. V., Grin'ko E. V., Kurkov M. V., Suzdal'tsev N. R. Opyt GK «Geoskan». Sozdanie vysokotochnoi trekhmernoi modeli Tul'skoi oblasti. Geoprofi, 2018, no. 2, pp. 10–14.
6.   Fritsch D. (2015) Some Stuttgart Highlights of Photogrammetry and remote Sensing. Photogrammetric Week ’15, Ed. D. Fritsch, Wichmann, Berlin. Offenbach. pp. 3–20.
7.   Johnson A. (2014) Plane and geodetic surveying. 2nd ed. CRC Press. pp. 79–99.
8.   Tang R., Fritsch D., Cramer M., Schneider W. (2012) A Flexible Mathematical Method for Camera Calibration in Digital Aerial Photogrammetry. Photogrammetric Engineering & Remote Sensing (PERS), no. 78, pp. 1069–1077.
9.   Trinder John, Yincai Zhou (2017) UAS Applications Are Ubiquitous. GIM International, Volume 31, no. 4, pp. 6–7.
10.   Wim Van Wegen (2017) High-end UAVS. A Key Link in the Value Chain. GIM International, Volume 31, no. 4, pp. 30–31.
Citation:
Babashkin N.M., 
Kadnichanskiy S.A., 
Nekhin S.S., 
(2020) Research tests of the Geoscan 101, the Geoscan 201 hardware-and-software complexes. Geodesy and cartography = Geodezia i Kartografia, 81(1), pp. 19-25. (In Russian). DOI: 10.22389/0016-7126-2020-955-1-19-25
Publication History
Received: 16.05.2019
Accepted: 14.11.2019
Published: 20.02.2020

Content

2020 January DOI:
10.22389/0016-7126-2020-955-1