1 Trinh Le Hung
2 Mai Dinh Sinh
3 Zablotskii V.R.

Le Quy Don Technical University, Hanoi, Vietnam


Moscow State University of Geodesy and Cartography (MIIGAiK)

In recent years, land cover changes very quickly in urban areas due to the impact of population growth and socio-economic development. The authors present the method of land cover/land use classification based on the combination of Sentinel 2 and Landsat 8 multi-resolution satellite images. A middle infrared band (band 11), a near infrared (band 8) of Sentinel 2 image and a thermal infrared one (band 10) of Landsat 8 image were used to calculate EBBI (Enhanced Built-up and Barreness Index). The EBBI index and Sentinel 2 spectral bands with spatial resolution 10 m (band 2, 3, 4, 8) were used to classify the land cover. The obtained results showed that, the method of land cover classification based on combination of Sentinel 2 and Landsat 8 satellite images improves the overall accuracy by about 5 % compared with the one using only Sentinel 2 data. The results obtained at the study can be used for the management, assessment and monitoring the status and dynamics of land cover in urban areas.
1.   Baldina E. A., Grishchenko M. Yu. Issledovanie «teplovogo ostrova» Moskvy po raznosezonnym snimkam LANDSAT-7/ETM+. Geoinformatika, 2011, no. 3, pp. 61–69.
2.   Ivanov M. A., Prishchepov A. V., Golosov V. N., Zalyaliev R. R., Efimov K. V., Kondrat'eva A. A., Kinyashova A. D., Ionova Yu. K. Metodika kartografirovaniya dinamiki pakhotnykh ugodii v basseinakh rek Evropeiskoi territorii Rossii za period 1985–2015 gg. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, no. 5, pp. 161–171. DOI: 10.21046/2070-7401-2017-14-5-161-171.
3.   As-syakur Abd. R., Adnyana I. W., Arthana I. W, Nuarsa I. W. (2012) Enhanced built - up and bareness index (EBBI) for mapping built - up and bare land in an urban area. Remote Sensing, no. 4, pp. 2957-2970.
4.   Bramhe V., Ghosh S., Garg P. (2018) Extraction of built-up area by combining textural features and spectral indices from Landsat 8 multispectral image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. 42 (5), pp. 727-733.
5.   Gadal S., Ouerghemmi W. (2019) Multi-level morphometric characterization of built-up areas and change detection in Siberian sub-arctic urban area: Yakutsk. International Journal of Geo-Information, no. 8, pp. 129-149.
6.   Guindon B., Zhang Y., Dillabaugh C. (2004) Landsat urban mapping based on a combined spectral-spatial methodology. Remote Sensing of Environment, no. 92 (2), pp. 218-232.
7.   Li H., Wang C., Zhong C., Su A., Xiong C., Wang J., Liu J. (2017) Mapping urban bare land uutomatically from Landsat imagery with a simple index. Remote Sensing, no. 9 (3), pp. 1-15.
8.   Masek J. G., Lindsay F. E., Goward S. N. (2000) Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996 from Landsat observations. International Journal of Remote Sensing, no. 21 (18), pp. 3473-3486.
9.   Nguyen H. K. L. (2011) Urban land cover/land use mapping from IBI index using Landsat TM data, a case study: Hue city, Thua Thien Hue province. pp. 205-212.
10.   Rasul A., Balzter H., Faqe Ibrahim G., Hameed H., Wheeler J., Adamu B., Ibrahim S., Najmaddin P. (2018) Applying built-up and bare soil indicies from Landsat 8 to cities in dry climates. Land, Volume 7, no. 81, pp. 1-13.
11.   Ridd M. K. (1994) Exploring a V-I-S (vegetation-imprevious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, no. 16 (12), pp. 2165-2185.
12.   Sekertekin A., Abdikan S., Marangoz A. (2018) The acquisition of impervious surface area from Landsat 8 satellite sensor data using urban indices: a comparative analysis. Environmental Monitoring and Assessment, no. 190 (7), pp. 1-13.
13.   Trinh L. H. (2018) Combined use of Landsat 8 and Sentinel 2 images for enhanced spatial resolution of land surface temperature. Vietnam National University Journal of Science: Earth and Environmental Sciences, no. 34 (4), pp. 1-12.
14.   Xian G., Crane M. (2005) Assessments of urban growth in the Tampa Bay wateshed using remote sensing data. Remote Sensing of Environment, no. 97, pp. 203-215.
15.   Xu H. Q. (2002) Spatial expansion of urban/town in Fuqing and its driving analysis. Remote Sensing Technology and Application, no. 17, pp. 86-92.
16.   Xu H. Q. (2007) Extraction of urban built - up land features from Landsat imagery using a thematic oriented index combination technique. Photogrammetric Engineering & Remote Sensing, no. 73 (12), pp. 1381-1391.
17.   Xu H. Q. (2008) A study on information extraction of water body with the modified mormalized difference water index (MNDWI). Journal of Remote Sensing, no. 9 (5), pp. 511-517.
18.   Zha Y., Gao J., Ni S. (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, no. 24 (3), pp. 583-594.
19.   EarthExplorer. URL:
Trinh Le Hung, 
Mai Dinh Sinh, 
Zablotskii V.R., 
(2020) The urban areas classification methodology according to multi-zone images of Sentinel 2 and Landsat 8 (on the example of the city of Thanh Hoa, Vietnam). Geodesy and cartography = Geodezia i Kartografia, 956(2), pp. 40-49. (In Russian). DOI: 10.22389/0016-7126-2020-956-2-40-49
Publication History
Received: 04.06.2019
Accepted: 26.09.2019
Published: 20.03.2020


2020 February DOI:

QR-code page

QR-код страницы