DOI: 
10.22389/0016-7126-2020-956-2-40-49
1 Trinh Le Hung
2 Mai Dinh Sinh
3 Zablotskii V.R.
Year: 
№: 
956
Pages: 
40-49

Le Quy Don Technical University, Hanoi, Vietnam

1, 
2, 

Moscow State University of Geodesy and Cartography (MIIGAiK)

3, 
Abstract:
In recent years, land cover changes very quickly in urban areas due to the impact of population growth and socio-economic development. The authors present the method of land cover/land use classification based on the combination of Sentinel 2 and Landsat 8 multi-resolution satellite images. A middle infrared band (band 11), a near infrared (band 8) of Sentinel 2 image and a thermal infrared one (band 10) of Landsat 8 image were used to calculate EBBI (Enhanced Built-up and Barreness Index). The EBBI index and Sentinel 2 spectral bands with spatial resolution 10 m (band 2, 3, 4, 8) were used to classify the land cover. The obtained results showed that, the method of land cover classification based on combination of Sentinel 2 and Landsat 8 satellite images improves the overall accuracy by about 5 % compared with the one using only Sentinel 2 data. The results obtained at the study can be used for the management, assessment and monitoring the status and dynamics of land cover in urban areas.
References: 
1.   Baldina E. A., Grishchenko M. Yu. Issledovanie «teplovogo ostrova» Moskvy po raznosezonnym snimkam LANDSAT-7/ETM+. Geoinformatika, 2011, no. 3, pp. 61–69.
2.   Ivanov M. A., Prishchepov A. V., Golosov V. N., Zalyaliev R. R., Efimov K. V., Kondrat'eva A. A., Kinyashova A. D., Ionova Yu. K. Metodika kartografirovaniya dinamiki pakhotnykh ugodii v basseinakh rek Evropeiskoi territorii Rossii za period 1985–2015 gg. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, no. 5, pp. 161–171. DOI: 10.21046/2070-7401-2017-14-5-161-171.
3.   As-syakur Abd. R., Adnyana I. W., Arthana I. W, Nuarsa I. W. (2012) Enhanced built - up and bareness index (EBBI) for mapping built - up and bare land in an urban area. Remote Sensing, no. 4, pp. 2957-2970.
4.   Bramhe V., Ghosh S., Garg P. (2018) Extraction of built-up area by combining textural features and spectral indices from Landsat 8 multispectral image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. 42 (5), pp. 727-733.
5.   Gadal S., Ouerghemmi W. (2019) Multi-level morphometric characterization of built-up areas and change detection in Siberian sub-arctic urban area: Yakutsk. International Journal of Geo-Information, no. 8, pp. 129-149.
6.   Guindon B., Zhang Y., Dillabaugh C. (2004) Landsat urban mapping based on a combined spectral-spatial methodology. Remote Sensing of Environment, no. 92 (2), pp. 218-232.
7.   Li H., Wang C., Zhong C., Su A., Xiong C., Wang J., Liu J. (2017) Mapping urban bare land uutomatically from Landsat imagery with a simple index. Remote Sensing, no. 9 (3), pp. 1-15.
8.   Masek J. G., Lindsay F. E., Goward S. N. (2000) Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996 from Landsat observations. International Journal of Remote Sensing, no. 21 (18), pp. 3473-3486.
9.   Nguyen H. K. L. (2011) Urban land cover/land use mapping from IBI index using Landsat TM data, a case study: Hue city, Thua Thien Hue province. pp. 205-212.
10.   Rasul A., Balzter H., Faqe Ibrahim G., Hameed H., Wheeler J., Adamu B., Ibrahim S., Najmaddin P. (2018) Applying built-up and bare soil indicies from Landsat 8 to cities in dry climates. Land, Volume 7, no. 81, pp. 1-13.
11.   Ridd M. K. (1994) Exploring a V-I-S (vegetation-imprevious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, no. 16 (12), pp. 2165-2185.
12.   Sekertekin A., Abdikan S., Marangoz A. (2018) The acquisition of impervious surface area from Landsat 8 satellite sensor data using urban indices: a comparative analysis. Environmental Monitoring and Assessment, no. 190 (7), pp. 1-13.
13.   Trinh L. H. (2018) Combined use of Landsat 8 and Sentinel 2 images for enhanced spatial resolution of land surface temperature. Vietnam National University Journal of Science: Earth and Environmental Sciences, no. 34 (4), pp. 1-12.
14.   Xian G., Crane M. (2005) Assessments of urban growth in the Tampa Bay wateshed using remote sensing data. Remote Sensing of Environment, no. 97, pp. 203-215.
15.   Xu H. Q. (2002) Spatial expansion of urban/town in Fuqing and its driving analysis. Remote Sensing Technology and Application, no. 17, pp. 86-92.
16.   Xu H. Q. (2007) Extraction of urban built - up land features from Landsat imagery using a thematic oriented index combination technique. Photogrammetric Engineering & Remote Sensing, no. 73 (12), pp. 1381-1391.
17.   Xu H. Q. (2008) A study on information extraction of water body with the modified mormalized difference water index (MNDWI). Journal of Remote Sensing, no. 9 (5), pp. 511-517.
18.   Zha Y., Gao J., Ni S. (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, no. 24 (3), pp. 583-594.
19.   EarthExplorer. URL: http://earthexplorer.usgs.gov/
Citation:
Trinh Le Hung, 
Mai Dinh Sinh, 
Zablotskii V.R., 
(2020) The urban areas classification methodology according to multi-zone images of Sentinel 2 and Landsat 8 (on the example of the city of Thanh Hoa, Vietnam). Geodesy and cartography = Geodezia i Kartografia, 956(2), pp. 40-49. (In Russian). DOI: 10.22389/0016-7126-2020-956-2-40-49
Publication History
Received: 04.06.2019
Accepted: 26.09.2019
Published: 20.03.2020

Content

2020 February DOI:
10.22389/0016-7126-2020-956-2

QR-code page

QR-код страницы