DOI: 
10.22389/0016-7126-2020-956-2-50-56
1 Gansvind I.N.
Year: 
№: 
956
Pages: 
50-56

Geoinformation Research Centre RAS

1, 
Abstract:
Changes in space activities related to the practice of using small satellites are considered. The relatively low cost of development, production and launch in low Earth orbiting are explained due to transformation of small satellites into a mass product, available for using in the educational process, remote sensing, in meteorology, flight-testing new technologies, communication and internet distribution as well as space exploration. Small satellites constellations serve the need for systematic global imagery with minimal interval between observing any area of the Earth. Large constella- tions of satellites with radio-occultation equipment provide high-altitude profiles of atmospheric pressure, temperature and humidity for assimilation in weather models. Small satellites will find applications beyond low earth orbits. It is planned to launch 6U CubeSat Sky Fire in the vicinity of the moon to study its surface with new infrared hardware. The projected orbit for Lunar Orbital Platform Gateway will be checked using CubeSat to meet the design requirements.
References: 
1.   Kashirin A. V., Glebanova I. I. Analiz sovremennogo sostoyaniya rynka nanosputnikov kak proryvnoi innovatsii i vozmozhnosti ego razvitiya v Rossii. Molodoi uchenyi, 2016, no. 7 (111), pp. 855–867.
2.   Kostev Yu. V., Mezenova O. V., Pozin A. L., Shershakov V. M. Sistema zapuska malykh kosmicheskikh apparatov. Izv. vuzov. Priborostroenie, 2016, Vol. 59, no. 6, pp. 482–488. DOI: 10.17586/0021-3454-2016-59-6-482-488.
3.   Sevast'yanov N. N., Branets V. N., Panchenko V. A., Kazinskii N. V., Kondranin T. V., Negodyaev S. S. Analiz sovremennykh vozmozhnostei sozdaniya malykh kosmicheskikh apparatov dlya distantsionnogo zondirovaniya Zemli. Tr. MFTI, 2009, Vol. 1, no. 3, pp. 15–23.
4.   Sputnik distantsionnogo zondirovaniya Zemli SKYSAT. URL: http://www.dauria.ru/blog/skysat (accessed: 18.07.2019).
5.   Beukelaers V., Hovard B., Mason J., Safyan M., Doan D., Perera J. (2018) Completing Mission 1: Imaging Everywhere every Day. Proceedings of the 4S Symposium Small Satellites Systems and Services (2018, 28 May - 1 June, Sorrento, Italy). pp. 1-10.
6.   Dzamba T., Enright J., Sinclair D., Amankwah K., Votel R., Jovanovic I., McVittie G. (2014) Success by 1000 Improvements: Flight Qualification of the ST-16 Star Tracker. Proceedings of 28 Annual AIAA/USU Conference on Small Satellites, SSC 14-XII-1. pp. 1-13.
7.   Foster C., Hallam H., Mason J. (2015) Orbit determination and Difference-drag Control of Planet Labs Cubesat Constellation. AAS 15-524. pp. 1-13.
8.   Hanson J. (2017) NASA’s Pathfinder Technology Demonstrator. Small Satellite Conference SSc 17-III-02. 6 p.
9.   Helvajan H., Jansun S. (ed.) (2009) Small Satellites: Past, Present and Future. Aerospace Press. 800 p.
10.   Leung L., Beakelaers V., Chesi S., Yoon H., Walker D., Egbert J. (2018) ADCS at Scale: Calibrating and Monitoring the Dove Constellation. 32nd Annual AIAA/USU Conference on Small Satellites. 11 p.
11.   Verhoeven C. J. M., Bentum M. J., Monna G. L. E., Rotteveel J., Guo J. (2011) On the origin of satellite swarm. Acta Astronautica, no. 68 (7-8), pp. 1392-1398.
Citation:
Gansvind I.N., 
(2020) Small satellites in space activities. Geodesy and cartography = Geodezia i Kartografia, 81(2), pp. 50-56. (In Russian). DOI: 10.22389/0016-7126-2020-956-2-50-56
Publication History
Received: 22.07.2019
Accepted: 11.01.2019
Published: 20.03.2020

Content

2020 February DOI:
10.22389/0016-7126-2020-956-2