DOI: 
10.22389/0016-7126-2020-959-5-54-64
1 Dobryakova V.A.
2 Moskvina N.N.
3 Zhegalina L.F.
Year: 
№: 
959
Pages: 
54-64

Tyumen State University

1, 
2, 

Immanuel Kant Baltic Federal University

3, 
Abstract:
Balyk river basin for the period 2006–2017 using ArcGIS Pro statistical analysis tools are presented in this article. The information basis of the research is the local environment monitoring data of license areas of Ugra, Khanty-Mansiysk Autonomous Okrug, RF. The research was implemented in two stages. At the first stage, pollution hot spots were revealed basing on the calculation of local Getis-Ord Gi* index for each year. The calculation was made taking into account the mutual location of sampling points and value of the neighborhood. At the second stage hot spots genesis for 12 years was analyzed via modelling space-and-time cube. Clustering time series of hydrocarbons average annual concentration according to the Getis-Ord Gi* indicator made it possible to determine the places of one-off pollution, most likely associated with oil spills, and to track pollutants transportation along the current. The location of the increasing river ecosystem pollution was also determined. The obtained results enable bringing out basic zones of permanent high hydrocarbon concentrations and places of periodic discharges into the river basin.
References: 
1.   Doklad ob ekologicheskoi situatsii v Khanty-Mansiiskom avtonomnom okruge – Yugre v 2017 godu. URL: https://clck.ru/PQ3GT (accessed: 10.09.2019).
2.   Korennoi F. I., Petrova O. N., Gulenkin V. M., Karaulov A. K. Primenenie analiticheskikh instrumentov ArcGIS dlya vyyavleniya prostranstvenno-vremennykh zakonomernostei rasprostraneniya osobo opasnykh zabolevanii sel'skokhozyaistvennykh zhivotnykh. ArcReview, 2017, no. 1 (80), URL: https://clck.ru/NgkxM (accessed: 10.09.2019).
3.   Mitchell E. Rukovodstvo ESRI po GIS analizu. T. 1: Geograficheskie zakonomernosti i vzaimodeistviya. Per. kompanii «Data+». New York: Esri Press, 1999, 192 p. URL: https://b-ok.cc/book/3267936/660975 (accessed: 10.09.2019).
4.   Teoriya statistiki: Uchebnik. Pod red. G. L. Gromyko. – 2-e izd., pererab. i dop. Moskva: Infra-M, 2005, 476 p.
5.   Alberti M., Booth D., Hill K., Bekkah C., Coburn B., Avolio C., Coe S., Spirandelli D. (2007) The impacts of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, no. 80, pp. 345-361.
6.   Braithwaite A., Li Q. (2007) Transnational Terrorism Hot Spots: Identification and Impact Evaluation. Conflict Management and Peace Science, no. 24 (4), pp. 281-296. DOI: 10.1080/07388940701643623.
7.   Chainey S. (2010) Advanced hotspot analysis: spatial significance mapping using Gi*. URL: click.ru/Ngojo (accessed: 10.09.2019).
8.   Crossman N. D., Bryan B. A. (2009) Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecological Economics, no. 68(3), pp. 654-668. DOI: 10.1016/j.ecolecon.2008.05.003.
9.   De Groot R. S., Alkemade R., Braat L., Hein L., Willemen L. (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, no. 7 (3), pp. 260-272. DOI: 10.1016/j.ecocom.2009.10.006.
10.   Geits A., Ord J. K. (1992) The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, Volume 24, no. 3, pp. 189-206. DOI: 10.1111/j.1538-4632.1992.tb00261.x.
11.   Getis A., Ord J. K. (1996) Local spatial statistics: An overview. In Longley P., Batty M. (eds.) Spatial Analysis: Modeling in GIS Environment, John Wiley & Sons Inc.: New York, NY, USA;. pp. 261-278.
12.   Griffith D., Getis A. (2017) Spatial Filtering. In: Shekhar S., Xiong H., Zhou X. (eds) Encyclopedia of GIS. Springer, Cham.
13.   Haque U., Scott L. M., Hashizume M., Fisher E., Haque R., Yamamoto T., Glass G. E. (2012) Modelling malaria treatment practices in Bangladesh using spatial statistics. Malar Journal, no. 11, pp. 11-63. DOI: 10.1186/1475-2875-11-63.
14.   Hart T. C., Zandbergen P. A. (2014) Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. An International Journal of Police Strategies & Management, no. 37, pp. 305-323.
15.   Khan G., Qin X., Noyce D. A. (2008) Spatial Analysis of Weather Crash Patterns. Journal of Transportation Engineering, Volume 134, no. 5, pp. 191-202. DOI: 10.1061/(ASCE)0733-947X(2008)134:5(191).
16.   Lei Ding, Kun-Lun Chen, Ting Liu, Sheng-Gao Cheng, Xu Wang (2015) Spatial-Temporal Hotspot Pattern Analysis of Provincial Environmental Pollution Incidents and Related Regional Sustainable Management in China in the Period 1995-2012. Sustainability, no. 7, pp. 14385-14407. DOI: 10.3390/su71014385.
17.   Li Y., Zhang L., Yan J., Wang P., Hu N., Cheng W., Fu B. (2017) Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. Journal of Geographical Sciences, no. 27 (6), pp. 681-696. DOI: 10.1007/s11442-017-1400-x.
18.   (2013) Mapping and assessment of ecosystems and their services: An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020. Luxembourg: Publications Office of the European Union. 57 p. URL: clck.ru/Ngovx (accessed: 10.09.2019).
19.   Ord J. K., Getis A. (1995) Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical analysis, no. 27 (4), pp. 286-306. DOI: 10.1111/j.1538-4632.1995.tb00912.x.
20.   Peng J. F., Song Y. H., Yuan P., Xiao S. H., Han L. (2013) An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks. Journal of Environmental Sciences, no. 25, pp. 1441-1449. DOI: 10.1016/s1001-0742(12)60187-9.
21.   Rizo-Decelis L. D., Pardo-Igúzquiza E., Andreo B. (2017) Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots. Science of the Total Environment, no. 605, pp. 276-290. DOI: 10.1016/j.scitotenv.2017.06.145.
22.   Roth N. E., Allan J. D., Erickson D. L. (1996) Landscape influences on streambiotic integrity assessed at multiple spatial scales. Landscape Ecology, no. 11, pp. 141-156.
23.   Schröter M., Remme R. P. (2016) Spatial prioritization for conserving ecosystem services: Comparing hotspots with heuristic optimisation. Landscape Ecology, no. 31 (2), pp. 431-450. DOI: 10.1007/s10980-015-0258-5.
24.   Shaker R., Crăciun I., Grădinaru I. (2010) Relating land cover and urban patterns to aquatic ecological integrity: A spatial analysis. Geographia Technica, no. 5 (1), pp. 76-90.
25.   Wubuli A., Xue F., Jiang D., Yao X., Upur H., Wushouer Q. (2015) Socio-demographic predictors and distribution of pulmonary tuberculosis (TB) in Xinjiang, China: A spatial analysis. PLoS One, no. 10, pp. 1-22. DOI: 10.1371/journal.pone.0144010.
26.   Zhang L., Fu B., Lü Yetal (2015) Balancing multiple ecosystem services in conservation priority setting. Landscape Ecology, no. 30 (3), pp. 535-546. DOI: 10.1007/s10980-014-0106-z.
Citation:
Dobryakova V.A., 
Moskvina N.N., 
Zhegalina L.F., 
(2020) Getis-Ord Gi* statistics at adaptation of perennial hydrocarbon content data in Bolshoy Balyk river basin. Geodesy and cartography = Geodezia i Kartografia, 81(5), pp. 54-64. (In Russian). DOI: 10.22389/0016-7126-2020-959-5-54-64
Publication History
Received: 14.10.2019
Accepted: 05.02.2020
Published: 20.06.2020

Content

2020 May DOI:
10.22389/0016-7126-2020-959-5