UDC: 
DOI: 
10.22389/0016-7126-2020-960-6-13-19
1 Visirov Yu.V.
Year: 
№: 
960
Pages: 
13-19

Russian University of Transportation

1, 
Abstract:
Invisibility between points can occur due to dense building location, terrain irregularities, intensive construction, and under polar night conditions. Forest thickets (the distance between the trunks up to 5 m, the closeness of the crowns start at 0,5 m) and undergrowth require cutting and clearing glades; terrain elevations, dense building setting, traffic flows and construction machines complicate the development of geodetic reference networks, the implementation of detailed surveys and construction layout. In the absence of visibility when the sides of the geodetic network make 200–500 m, it is recommended that two or more GPS receivers should work simultaneously under the same weather conditions, which compensates for errors at receiving radio signals, except for multipath and noise. With synchronous operation of the receivers, accurate coordinates and orientations for the upcoming electronic geodetic surveys are at mutually visible neighboring points obtained even without post-processing. Simultaneous GPS measurements enable finding the distance between them and horizontal angles in a closed area over the nearest points of the base and moving antennas in the building network for geodetic planning justification of detailed surveys and construction layout.
References: 
1.   Bovshin N.A. (2016) Ob otsenke kachestva postoyanno deistvuyushchikh geodezicheskikh setei On the accuracy estimation of continuously operated geodetic networks. Geodesy and Cartography, 5. pp. 2–6. (In Russian). DOI: 10.22389/0016-7126-2016-911-5-2-6.
2.   Bovshin N.A. (2016) Ob otsenke kachestva postoyanno deistvuyushchikh geodezicheskikh setei On the accuracy estimation of continuously operated geodetic networks. Geodesy and Cartography, 6. pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2016-912-6-2-7.
3.   Bovshin N.A. (2016) Ob otsenke kachestva postoyanno deistvuyushchikh geodezicheskikh setei On the accuracy estimation of continuously operated geodetic networks. Geodesy and Cartography, 7. pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2016-913-7-2-7.
4.   Vizirov Yu. V., Skvortsov A. D. GPS-izmereniya v neprosmatrivaemoi mestnosti. Tr. XIX Vseros. nauch.-prakt. konf. «Bezopasnost' dvizheniya poezdov», Moskva: MIIT, 2018. pp. I-5/6.
5.   Vinogradov A.V., Voytenko A.V., Osipov P.S., Fedorovskiy A.A. (2018) Poverka opticheskogo tsentrira podstavki adaptera dlya GNSS-antenn Checking the optical plummet of the upper tribrach plate for adapter GNSS antennas. Geodesy and cartography, 79, 2. pp. 10-16 . (In Russian). DOI: 10.22389/0016-7126-2018-932-2-10-16.
6.   Genike A.A., Pobedinskij G.G. Global'nye sputnikovye sistemy opredeleniya mestopolozheniya i ih primenenie v geodezii. Izd. 2-e, pererab. i dop.. M.: Kartgeocentr, 2004. 355 p.
7.   Grishko S.V. (2017) Vliyanie prodolzhitel'nosti nablyudenii na tochnost' rezul'tatov sputnikovykh izmerenii The impact of duration observations on precision of results GNSS measurements. Geodesy and Cartography, 3. pp. 7-13. (In Russian). DOI: 10.22389/0016-7126-2017-921-3-7-13.
8.   Karpik A.P., Ganagina I.G., Kosarev N.S., Goldobin D.N. (2015) Accuracy characteristics research of single frequency GNSS-receiver with using GLONASS ground infrastructure. Geodesy and Cartography, 7. pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2015-901-7-2-7.
9.   Kaftan V. I. Geodezicheskie sputnikovye izmereniya i ikh obrabotka. Moskva: MIIT, 2013. 111 p.
10.   Markuze Yu.I., Golubev V.V. Teoriya matematicheskoj obrabotki geodezicheskih izmerenij: Ucheb. Posobie dlya vuzov. Pod obshch. red. Yu. I. Markuze. M.: Akademicheskij Proekt Al'ma Mater, 2010. 247 p.
11.   Prusakov A.N., Spiridonov A.I., Prusakov A.A. (2018) Avtomatizirovannyj lazernyj komparator dlya poverki oborudovaniya tsifrovogo nivelirovaniya The automated laser comparator for calibration of digital equipment leveling. Geodesy and cartography, 79, 3. pp. 17-22 . (In Russian). DOI: 10.22389/0016-7126-2018-933-3-17-22.
12.   Spiridonov A. I. Metrologicheskoe obespechenie vysokotochnykh geodezicheskikh sputnikovykh izmerenii. Tr. XVIII Vseros. nauch.-prakt. konf. «Bezopasnost' dvizheniya poezdov», Moskva: MIIT, 2017. pp. IV-55/56.
13.   Sholokhov A.V., Kotov N.I., Berkovich S.B., Makhaev A.Y. (2018) Otsenka dostizhimoj tochnosti opredeleniya azimuta na korotkom bazise s ispol'zovaniem sputnikovyh i geodezicheskih sredstv Achievable accuracy of an azimuth obtained at short range with use of GPS and geodetic instruments. Geodesy and cartography, 79, 6. pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2018-936-6-2-8.
14.   Kohr J. (1969) Uber mittlere Punktfehler. Zeitschrift fur Vermessungswesen, Volume 94, 11, pp. 445-455.
15.   Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews (2001) Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc., 409 p.
Citation:
Visirov Yu.V., 
(2020) Lineino-uglovye postroeniya v zakrytoi mestnosti s ispol'zovaniem sputnikovoi geodezicheskoi apparatury [Creation of linear-angular constructions in a closed area using satellite geodetic equipment]. Geodesy and Cartography = Geodezija i kartografija, 81, 6, pp. 13-19. (In Russian). DOI: 10.22389/0016-7126-2020-960-6-13-19
Publication History
Received: 03.12.2018
Accepted: 25.10.2019
Published: 20.07.2020

Content

2020 June DOI:
10.22389/0016-7126-2020-960-6

QR-code page

QR-код страницы