UDC: 
DOI: 
10.22389/0016-7126-2020-962-8-58-64
1 Varfolomeev A.F.
2 Kovalenko E.A.
3 Manukhov V.F.
4 Kalashnikova L.G.
Year: 
№: 
962
Pages: 
58-64

National Research Ogarev Mordovia State University

1, 
2, 
3, 
4, 
Abstract:
In recent years, there have been qualitative changes in surveying associated with the use of robotic systems, such as unmanned aerial vehicles. Currently, traditional geodetic and topographic technologies are giving way to high-precision and high-performance systems using robotics. The technology of aerial photography from drones for mapping territories, operational monitoring linear structures, construction sites, as well as for engineering and underground surveys, solving cadastral matters, building realistic three-dimensional terrain models, etc., is gaining more and more popularity in the world. The transition to new technologies entails restructuring not only the methods of determining coordinates, but also the stages of pre-design and design work. The authors describes the capabilities of geographic information systems for automating some stages of field geodetic data cameral processing obtained through using unmanned aircraft. As a result of the study, it was discovered that the marks of the earth’s surface, read from the constructed digital map, are in good agreement with those obtained as a result of the ground-based geodetic survey.
References: 
1.   Alekseenko N. A., Kuramagomedov V. M., Medvedev A. A. Teplovaya s"emka s bespilotnykh letatel'nykh apparatov v geograficheskikh issledovaniyakh. Ogarev-online, 2015, no. 24 (65), URL: http://journal.mrsu.ru/arts/teplovaya-semka-s-bespilotnyx-letatelnyx-apparatov-v-geograficheskix-issledovaniyax (accessed: 25.12.2019).
2.   Alyab'ev A. A., Litvintsev K. A., Kobzeva E. A. Fotogrammetricheskii metod v kadastrovykh rabotakh: tsifrovye stereomodeli i ortofotoplany. Geoprofi, 2018, no. 2, pp. 4–8.
3.   Babashkin N. M., Kadnichanskii S. A., Nekhin S. S. Sravnenie effektivnosti aerofototopograficheskoi s"emki s ispol'zovaniem bespilotnykh i pilotiruemykh aviatsionnykh sistem. Geoprofi, 2017, no. 1, pp. 14–19.
4.   Varfolomeev A.F., Kovalenko E.A., Manukhov V.F., Syromyatnikova O.V. (2019) Design works at creating geodetic control grids using GIS-technologies. Geodezia i Kartografia, 80(3), pp. 20-25. (In Russian). DOI: 10.22389/0016-7126-2019-945-3-20-25.
5.   Dzhonston K., Ver Khoef D. M., Krivoruchko K., Lukas N. ArcGIS Geostatistical Analyst. Rukovodstvo pol'zovatelya. – ESRI, USA. 2001, 278 p.
6.   Zuev N. A., Kobzev A. A. Vozmozhnost' primeneniya aerofotos"emki s BAS dlya kompleksnykh kadastrovykh rabot. Geoprofi, 2017, no. 4, pp. 11–15.
7.   MakKoi D., Dzhonston K. ArcGIS Spatial Analayst. Rukovodstvo pol'zovatelya. Moskva: Data +, 2002, 216 p.
8.   Rukovodstvo pol'zovatelya Agisoft PhotoScan Professional Edition, versiya 1.4. URL: http://www.agisoft.com/pdf/photoscan-pro_1_4_ru.pdf (accessed: 25.12.2019).
9.   Savinykh V. P., Tsvetkov V. Ya. Geoinformatsionnyi analiz dannykh distantsionnogo zondirovaniya. Moskva: Kartgeotsentr-Geodezizdat, 2001, pp. 228.
10.   Ries C., Kager H., Stadler P. (2002) GPS/IMU-unterstützte Georeferenzierung der Datenflugzeuggetragener Multispektraler Scanner. Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, no. 11, pp. 59‒66.
Citation:
Varfolomeev A.F., 
Kovalenko E.A., 
Manukhov V.F., 
Kalashnikova L.G., 
(2020) Special features of aerial survey technology using unmanned aircraft. Geodesy and cartography = Geodezia i Kartografia, 81(8), pp. 58-64. (In Russian). DOI: 10.22389/0016-7126-2020-962-8-58-64