DOI: 
10.22389/0016-7126-2021-977-11-40-50
1 Akhmedova I.D.
2 Sulkarnaeva L.D.
3 Zherebyatieva N.V.
4 Petukhova A.V.
Year: 
№: 
977
Pages: 
40-50

Tyumen State University

1, 
2, 
3, 

The Second Wind Foundation

4, 
Abstract:
The authors present the results of mapping the “heat island” surface in the city of Tyumen and determining its spatial and seasonal manifestations using the Landsat-8 satellite data. Geothermic scenes of four seasons were obtained and analyzed: winter – 20.01.2015, spring – 03.04.2015, summer – 22.06.2015, autumn – 20.11.2015. To perform an assessment of the “heat island” effects the year of 2015 was selected, in which the “heat waves” were recorded. The study established the presence of a “heat island” and its temperature anomalies. Its temperature values are obtained from the difference between the data in the area of the weather station (“countryside”) and the average temperatures within the boundaries in Tyumen (“city”). The values of anomalies is the difference between the maximum (or minimum) and the average temperatures there. This data in “countryside” and “city” make the background for urban and suburban areas. The “heat island” effect is most pronounced in winter (the excess of the “city” average temperature values over the background ones in the meteorological station area (“village”) is 4 °С), but is also present in other seasons (in spring – this excess is 2,6 °С, in summer and autumn periods – 0,6–0,8 °С). Significant anomalies in winter were noted over industrial and energy objects (the temperature difference was 17 °С), in autumn – over energy facilities (discrepancy 14,3 °С), in spring and summer – over industrial structures (8 –13 °С incongruity). Those phenomena were recorded: in summer – mainly over water bodies and green areas, in winter – over non-built-up and non-vegetated areas. As a result of the “heat island” effect spatial and seasonal manifestation analysis, the urban areas with stable temperature anomalies were identified.
References: 
1.   Baldina E. A., Konstantinov P. I., Gpishchenko M. Yu., Vapentsov M. I. Issledovanie gopodskikh ostpovov tepla s pomoshch'yu dannykh distantsionnogo zondipovaniya v infpakpasnom teplovom diapazone. DZZ dlya budushchei Zemli. Zemlya iz kosmosa, 2015, no. Special Issue, pp. 38–42.
2.   Gornyi V. I., Lyal'ko V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Filippovich V. E., Stankevich S. A., Brovkina O. V., Kiselev A. V., Davidan T. A., Lubskii N. S., Krylova A. B. Prognoz teplovoi reaktsii gorodskoi sredy Sankt-Peterburga i Kieva na izmenenie klimata (po materialam s"emok sputnikami EOS i Landsat). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, no. 2, pp. 176–191.
3.   Kislov A. V., Alekseeva L. I., Varentsov M. I., Konstantinov P. I. Izmenenie klimata i ekstremal'nye pogodnye yavleniya v Moskovskoi aglomeratsii. Meteorologiya i gidrologiya, 2020, no. 7, pp. 64–76. DOI: 10.3103/S1068373920070055.
4.   Kislov A. V., Varentsov M. I., Gorlach I. A., Alekseeva L. I. «Ostrov tepla» moskovskoi aglomeratsii i urbanisticheskoe usilenie global'nogo potepleniya. Vestnik Moskovskogo un-ta. Ser. 5. Geografiya, 2017, no. 4, pp. 12–19.
5.   Konstantinov P. I., Varentsov M. I., Repina I. A., Artamonov A. Yu., Shuvalov S. V., Samsonov T. E., Grishchenko M. Yu., Semenova A. A., Vorotilova P. G., Ezau I. N., Baklanov A. A. Issledovanie mikroklimata, povtoryaemosti prizemnykh inversii i uslovii termicheskogo komforta gorodov Arkticheskoi zony RF (na primere seti UHIARC)/CITES΄2019. 2019, pp. 199–201.
6.   Korableva E. G., Lenskaya O. Yu. Issledovaniya ostrova tepla goroda Chelyabinska v zimnii period. Vestnik Chelyabinskogo gos. un-ta, 2010, no. 8 (189), pp. 15–23.
7.   Pogorelov A. V., Lipilin D. A. Teplovoi «portret» goroda Krasnodara po dannym sputnikovykh snimkov. Vestnik Permskogo nats. issl. politekh. un-ta. Prikladnaya ekologiya. Urbanistika, 2016, no. 4 (24), pp. 32–45. DOI: 10.15593/2409-5125/2016.04.03.
8.   Aleksandrowicz O., Vuckovic M., Kiesel K., Mahdavi A. (2017) Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, no. 21, pp. 1–26. DOI: 10.1016/j.uclim.2017.04.002.
9.   Deilami K., Kamruzzaman M., Liu Y. (2018) Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, no. 67, pp. 30–42. DOI: 10.1016/j.jag.2017.12.009.
10.   Dipendra Salami Magar, Ramesh Kumar Salami Magar, Chhabi Lal Chidi (2021) Assessment of urban heat island in Kathmandu valley (1999–2017). The Geographical Journal of Nepal, no. 14, pp. 1–20. DOI: 10.3126/gjn.v14i0.35544.
11.   Kimuku C. W., Ngigi M. (2017) Study of Urban Heat Island Trends to Aid in Urban Planning in Nakuru County-Kenya. Journal of Geographic Information System, no. 9 (03), pp. 309–325. DOI: 10.4236/jgis.2017.93019.
12.   Oke T. R. (1981) Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of climatology, Volume 1, no. 3, pp. 237–254.
13.   Santamouris M., Cartalis C., Synnefa A., Kolo- kotsa D. (2015) On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings – A review. Energy and Buildings, no. 98, pp. 119–124. DOI: 10.1016/j.enbuild.2014.09.052.
14.   Ye S. L., Qi X. H., Chen Y. (2015) A study on the perception of heat waves among urban residents: Based on a survey in Fuzhou. јcta ecologica sinica, Volume 35, no. 20, pp. 6814–6820. DOI: 10.5846/stxb201403240531.
Citation:
Akhmedova I.D., 
Sulkarnaeva L.D., 
Zherebyatieva N.V., 
Petukhova A.V., 
(2021) The Earth’s surface remote sensing methods used to explore heat islands in the city of Tyumen. Geodesy and cartography = Geodezia i Kartografia, 82(11), pp. 40-50. (In Russian). DOI: 10.22389/0016-7126-2021-977-11-40-50
Publication History
Received: 17.08.2020
Accepted: 28.09.2021
Published: 20.12.2021

Content

2021 November DOI:
10.22389/0016-7126-2021-977-11

QR-code page

QR-код страницы