DOI: 
10.22389/0016-7126-2021-978-12-23-33
1 Gvozdev O.G.
2 Maiorov A.A.
3 Materuhin A.V.
Year: 
№: 
978
Pages: 
23-33

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
2, 
3, 
Abstract:
The article deals with the matter of restoring the geofield based high-intensity spatio-temporal data streams received from a highly mobile geosensors network in real time. It includes dozen thousands of active measuring devices that measure at a frequency of up to 5 Hz and are installed on mobile platforms moving at speeds of up to 80–100 km/h. For solving this task, we propose to apply the method of local smoothing. To adapt a kernel of local regression to the conditions of a specific task, such as the features of the terrain or the simulated geofield, as well as the characteristics of the geosensor network, the authors suggested using the kernel of local regression obtained through using stochastic optimization methods. The application of genetic algorithms and the method of simulating annealing for this purpose are considered. The structure of a generalized method based on this idea is presented in the article. The results of model experiments aimed to confirm the operability of this method and those of evaluating the performance of this method in single-threaded mode are given.
The results were obtained as a part of the state task of the Ministry of Science and Higher Education of the Russian Federation (No. 0708-2020-0001).
References: 
1.   Bondarev I.N., Materukhin A.V., Gvozdev O.G. Ispol’zovanie kletochnykh avtomatov dlya imitatsionnogo modelirovaniya rasprostraneniya zagryazneniya atmosfernogo vozdukha v usloviyakh megapolisa. URL: https://clck.ru/ahW3D (accessed: 15.11.2021).
2.   Vasil'ev K. K., Dement'ev V. E. Predstavlenie i obrabotka sputnikovykh mnogozonal'nykh izobrazhenii. Ul'yanovsk: UlGTU, 2017, 251 p.
3.   Savel'eva E.A., Dem'yanov V.V. Geostatistika: teoriya i praktika. Pod red. R.V. Arutyunyana. M.: Nauka, 2010, 327 p.
4.   Druki A. A., Spitsyn V. G., Bolotova Yu. A., Bashlykov A. A. Semanticheskaya segmentatsiya dannykh distantsionnogo zondirovaniya Zemli pri pomoshchi neirosetevykh algoritmov. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2018, Vol. 329, no. 1, pp. 59–68.
5.   Kanevskii M. F., Dem'yanov V. V., Savel'eva E. A., Chernov S. Yu. Osnovnye ponyatiya i elementy geostatistiki. Problemy okruzhayushchei sredy i prirodnykh resursov, 1999, no. 11, pp. 15–21.
6.   Kopnov M. V., Markov N. G. Vosstanovlenie dvumernykh geopolei metodami geostatistiki. Problemy informatiki, 2011, no. 2, pp. 36–43.
7.   Altman N. S. (1992) An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, no. 46:3, pp. 175–185. DOI: 10.1080/00031305.1992.10475879.
8.   Banzhaf W., Francone F.D., Keller R.E., Nordin P. (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc., San Francisco,
9.   Cleveland W. S., Devlin S. J. (1988) Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, no. 83 (403), pp. 596–610.
10.   Fox J., Weisberg S. (2018) Nonparametric Regression in R. URL: clck.ru/ahW4b (accessed: 15.11.2021).
11.   Harris C. R., Millman K. J., van der Walt S. J., et al (2020) Array programming with NumPy. Nature, no. 585, pp. 357–362. DOI: 10.1038/s41586-020-2649-2.
12.   Laarhoven P. J. M. van, Aarts E. H. L. (1987) Simulated Annealing: Theory and Applications. Dordrecht: Reidel.
13.   Lam S. K., Pitrou A., Seibert S. (2015) Numba: a LLVM-based Python JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (LLVM С15), no. 7, pp. 1–6. DOI: 10.1145/2833157.2833162.
14.   Lu X., Rudi A., Borgonovo E., Rosasco L. (2019) Faster Kriging: Facing High-Dimensional Simulators. Operations Research, Volume 68, no. 1, DOI: 10.1287/opre.2019.1860.
15.   Materukhin A. V., Gvozdev O. G., Maiorov A. A., Sokolova O. D. (2019) Simulation of spatiotemporal data streams from geosensors located on mobile objects. Conference: 2019 15th International Asian School-Seminar УOptimization Problems of Complex SystemsФ (OPCS). pp. 179–182. DOI: 10.1109/OPCS.2019.8880188.
16.   Robbins H., Monro S. (1951) A Stochastic Approximation Method. Ann. Math. Stat, no. 22 (3), pp. 400–407.
17.   Srinivasan B. V., Duraiswami R., Murtugudde R. (2010) Efficient kriging for real-time spatiotemporal interpolation. Proceedings of the 20th Conference on Probability and Statistics in the Atmospheric Sciences. pp. 228–235.
18.   Tan H. Kernel Smoothing Methods. URL: people.cs.georgetown.edu/~huiyang/cosc-878/slides/kernels.pdf (accessed: 15.11.2021).
19.   Vigsnes M., Kolbjørnsen O., Hauge V. L. (2017) Fast and Accurate Approximation to Kriging Using Common Data Neighborhoods. Mathematical Geosciences, no. 49, pp. 619–634.
20.   Wang Z., Bovik A.C., Sheikh H. R., Simoncelli E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, Volume 13, no. 4, pp. 600-612. DOI: 10.1109/TIP.2003.819861.
21.   Wang Z., Simoncelli E. P., Bovik A. C. (2003) Multiscale structural similarity for image quality assessment. Conference: Signals, Systems and Computers, no. 2, pp. 1398–1402. DOI: 10.1109/ACSSC.2003.1292216.
22.   Work with MODIS Remote Sensing Data using Open Source Python. URL: clck.ru/ahW5w (accessed: 15.11.2021).
Citation:
Gvozdev O.G., 
Maiorov A.A., 
Materuhin A.V., 
(2021) Method of restoring the geofield values based on data from a highly mobile geosensors network using an automatic adaptive technique for determining the parameters of the local regression kernel. Geodesy and cartography = Geodezia i Kartografia, 82(12), pp. 23-33. (In Russian). DOI: 10.22389/0016-7126-2021-978-12-23-33