ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Bondarev I.N., Materukhin A.V., Gvozdev O.G. Ispol’zovanie kletochnykh avtomatov dlya imitatsionnogo modelirovaniya rasprostraneniya zagryazneniya atmosfernogo vozdukha v usloviyakh megapolisa. URL: https://clck.ru/ahW3D (accessed: 15.11.2021). |
2. Vasil'ev K. K., Dement'ev V. E. Predstavlenie i obrabotka sputnikovykh mnogozonal'nykh izobrazhenii. Ul'yanovsk: UlGTU, 2017, 251 p. |
3. Savel'eva E.A., Dem'yanov V.V. Geostatistika: teoriya i praktika. Pod red. R.V. Arutyunyana. M.: Nauka, 2010, 327 p. |
4. Druki A. A., Spitsyn V. G., Bolotova Yu. A., Bashlykov A. A. Semanticheskaya segmentatsiya dannykh distantsionnogo zondirovaniya Zemli pri pomoshchi neirosetevykh algoritmov. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2018, Vol. 329, no. 1, pp. 59–68. |
5. Kanevskii M. F., Dem'yanov V. V., Savel'eva E. A., Chernov S. Yu. Osnovnye ponyatiya i elementy geostatistiki. Problemy okruzhayushchei sredy i prirodnykh resursov, 1999, no. 11, pp. 15–21. |
6. Kopnov M. V., Markov N. G. Vosstanovlenie dvumernykh geopolei metodami geostatistiki. Problemy informatiki, 2011, no. 2, pp. 36–43. |
7. Altman N. S. (1992) An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, no. 46:3, pp. 175–185. DOI: 10.1080/00031305.1992.10475879. |
8. Banzhaf W., Francone F.D., Keller R.E., Nordin P. (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc., San Francisco, |
9. Cleveland W. S., Devlin S. J. (1988) Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, no. 83 (403), pp. 596–610. |
10. Fox J., Weisberg S. (2018) Nonparametric Regression in R. URL: clck.ru/ahW4b (accessed: 15.11.2021). |
11. Harris C. R., Millman K. J., van der Walt S. J., et al (2020) Array programming with NumPy. Nature, no. 585, pp. 357–362. DOI: 10.1038/s41586-020-2649-2. |
12. Laarhoven P. J. M. van, Aarts E. H. L. (1987) Simulated Annealing: Theory and Applications. Dordrecht: Reidel. |
13. Lam S. K., Pitrou A., Seibert S. (2015) Numba: a LLVM-based Python JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (LLVM С15), no. 7, pp. 1–6. DOI: 10.1145/2833157.2833162. |
14. Lu X., Rudi A., Borgonovo E., Rosasco L. (2019) Faster Kriging: Facing High-Dimensional Simulators. Operations Research, Volume 68, no. 1, DOI: 10.1287/opre.2019.1860. |
15. Materukhin A. V., Gvozdev O. G., Maiorov A. A., Sokolova O. D. (2019) Simulation of spatiotemporal data streams from geosensors located on mobile objects. Conference: 2019 15th International Asian School-Seminar УOptimization Problems of Complex SystemsФ (OPCS). pp. 179–182. DOI: 10.1109/OPCS.2019.8880188. |
16. Robbins H., Monro S. (1951) A Stochastic Approximation Method. Ann. Math. Stat, no. 22 (3), pp. 400–407. |
17. Srinivasan B. V., Duraiswami R., Murtugudde R. (2010) Efficient kriging for real-time spatiotemporal interpolation. Proceedings of the 20th Conference on Probability and Statistics in the Atmospheric Sciences. pp. 228–235. |
18. Tan H. Kernel Smoothing Methods. URL: people.cs.georgetown.edu/~huiyang/cosc-878/slides/kernels.pdf (accessed: 15.11.2021). |
19. Vigsnes M., Kolbjørnsen O., Hauge V. L. (2017) Fast and Accurate Approximation to Kriging Using Common Data Neighborhoods. Mathematical Geosciences, no. 49, pp. 619–634. |
20. Wang Z., Bovik A.C., Sheikh H. R., Simoncelli E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, Volume 13, no. 4, pp. 600-612. DOI: 10.1109/TIP.2003.819861. |
21. Wang Z., Simoncelli E. P., Bovik A. C. (2003) Multiscale structural similarity for image quality assessment. Conference: Signals, Systems and Computers, no. 2, pp. 1398–1402. DOI: 10.1109/ACSSC.2003.1292216. |
22. Work with MODIS Remote Sensing Data using Open Source Python. URL: clck.ru/ahW5w (accessed: 15.11.2021). |
(2021) Method of restoring the geofield values based on data from a highly mobile geosensors network using an automatic adaptive technique for determining the parameters of the local regression kernel. Geodesy and cartography = Geodezia i Kartografia, 82(12), pp. 23-33. (In Russian). DOI: 10.22389/0016-7126-2021-978-12-23-33 |