ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. – 3-e izd. Moskva: Tekhnosfera, 2012, 1104 p. |
2. Guk A.P., Evstratova L.G. (2015) Designing of technological schemes for image processing for automated decoding of multispectral satellite imagery. Geodesy and Cartography, pp. 9–16. |
3. Duda R., Khart P. Raspoznavanie obrazov i analiz stsen. Per. s angl. Moskva: Mir, 1976, 511 p. |
4. Ershov D. V., Koroleva N. V., Tikhonova E. V., Saltykov A. N., Gavrilyuk E. A., Pugachevskii A. V. Otsenka masshtabov zarastaniya nelesnykh zemel' v Natsional'nom parke «Smolenskoe Poozer'e» za 25 let po sputnikovym dannym Landsat. Lesovedenie, 2018, no. 2, pp. 83–96. DOI: 10.7868/S0024114818020018. |
5. Lezhnin S. A. Otsenka zarastaniya zalezhei Yaranskogo raiona Kirovskoi oblasti po sputnikovym dannym. V sb. tr. konf. «Lesnye ekosistemy v usloviyakh izmeneniya klimata: biologicheskaya produktivnost' i distantsionnyi monitoring». 2020, pp. 160–171. |
6. Perepechina Yu. I., Glushenkov O. I., Korsikov R. S. Uchet i otsenka lesov, voznikshikh na sel’skokhozyaistvennykh zemlyakh, s ispol’zovaniem dannykh distantsionnogo zondirovaniya Zemli. Izvestiya vuzov “Lesnoi zhurnal”, 2016, no. 4, pp. 71–80. DOI: 10.17238/issn0536-1036.2016.4.71. |
7. Plutalova T. G. Monitoring sistemy zemlepol'zovaniya transgranichnoi territorii «Kulunda» po dannym distantsionnogo zondirovaniya Zemli. Izv. Altaiskogo otd. Russkogo geograficheskogo obshchestva, 2018, no. 1 (48), pp. 62–66. |
8. Fomin D. S., Chashchin A. N. Identifikatsiya borshchevika Sosnovskogo (Heracleum sosnowskyi Manden) po dannym distantsionnogo zondirovaniya Zemli v Srednem Predural'e. Izv. Orenburgskogo gos. agrarnogo un-ta, 2019, no. 1 (75), pp. 68–70. |
9. Goga T. A., Feranec J., Bucha T., Rusnák M., Sačkov I., Barka I., Kopecká M., Papčo J., Oťaheľ J., Szatmári D., Pazúr R., Sedliak M., Pajtík J., Vladovič J. (2019) A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sensing, no. 11 (23), pp. 2759–2778. DOI: 10.3390/rs11232759. |
10. Pitkänen T. P., Käyhkö N. (2017) Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, no. 130, pp. 150–161. DOI: 10.1016/j.isprsjprs.2017.05.016. |
11. Robinson D. J., Redding N. J., Crisp. D. J. (2002) Implementation of a fast algorithm for segmenting SAR imagery, Scientific and Technical Report. Defense Science and Technology Organization, Australia, 34 p. |
12. Roerdink J., Meijster A. (2001) The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae, no. 41 (1), pp. 187–228. |
(2021) Automated detection of agricultural land overgrowing using WorldView and Sentinel-2. Geodesy and cartography = Geodezia i Kartografia, 82(12), pp. 46-52. (In Russian). DOI: 10.22389/0016-7126-2021-978-12-46-52 |