1 Abramova A.S.

RAS Geological Institute (GIN RAS)

The accuracy of publicly available bathymetry grids such as GEBCO_08, SRTM30_Plus, and Predicted Topography is evaluated at six studied polygons of GIN RAS multibeam (MB) coverage. High-resolution and accuracy, independent GIN RAS MB grids are used as the ground truth. Comparison of GIN RAS MB grids with USCGC “Healy” and RV “Oden” gridded MB data revealed no systematic errors in the GIN RAS data. In order to assess the accuracy an algorithm was developed to calculate depth difference between grids built in different map projections with grid cells that do not match. The assessment revealed that GEBCO_08 is more accurate than S&S over three of the six polygons, which include mid oceanic ridge, shelf and continental slope areas (polygons 1, 5 and 6). The observed differences in the accuracy between GEBCO_08 and S&S are due to the source data accuracy at polygon 1, better source data coverage in GEBCO_08 for polygons 5 and 6 (MB data), and poor performance of the interpolation in the shelf areas for S&S at polygons 4, 5 and 6. These results show that morphology of the seafloor, source data accuracy and coverage as well, as interpolation method affect the accuracy of the final output bathymetry surface.
The work was carried out within the framework of the laboratory theme (№ 0135-2019-0076), as well as with the support of the RFBR grant № 18-05-70040 , № 18-35-20060.
1.   Zaionchek A. V., Brekke Kh., Sokolov S. Yu., Mazarovich A. O., Dobrolyubova K. O., Efimov V. N., Abramova A. S., Zaraiskaya Yu. A., Kokhan A. V., Moroz E. A., Peive A. A., Chamov N. P., Yampol’skii K. P. Stroenie zony perekhoda kontinent – okean severo-zapadnogo obramleniya Barentseva morya (po dannym 24, 25 i 26 reisov NIS “Akademik Nikolai Strakhov”, 2006–2009 gg.). Stroenie i istoriya razvitiya litosfery. Vklad Rossii v Mezhdunarodnyi polyarnyi god, Moskva: Paulsen, 2010, Vol. 4, pp. 111–157.
2.   Nikiforov S. L., Koshel' S. M., Frol' V. V., Popov O. E., Levchenko O. V. O metodakh postroeniya tsifrovykh modelei rel'efa dna (na primere Belogo morya). Okeanologiya, 2015, Vol. 55, no. 2, pp. 326–336.
3.   Tsentral'nyi Arkticheskii bassein [karty]. Masshtab 1 : 2 500 000, po paralleli 75°. Proektsiya stereograficheskaya: 91115. SPb.: GUNiO MO RF, 2002,
4.   Amante C., Eakins B. W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado. 19 p.
5.   Becker J. J., Sandwell D. T., Smith W. H. F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S.-H., Ladner R., Marks K., Nelson S., Pharaoh A., Sharman G., Trimmer R., Rosenburg J., Wallace G., Weatherall P. (2009) Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, no. 32:4, pp. 355-371. DOI: 10.1080/01490410903297766.
6.   (2003) BODC. The GEBCO 1 minute grid, Centenary edition of the GEBCO digital atlas [CD-ROM]. Liverpool: British Oceanographic Data Centre.
7.   (2008) BODC. The GEBCO_08 Grid. Liverpool: British Oceanographic Data Centre.
8.   Florinsky I. V. (2016) Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Amsterdam: Elsevier Academic Press. 486 p.
9.   (2008) International Hydrographic Organization (IHO) standards for hydrographic surveys. Special Publication 44, 5 ed. Monaco: IHO.
10.   Jakobsson M., Calder B., Mayer L. (2002) On the effect of random errors in gridded bathymetric compilations. Journal of Geophysical Research-Solid Earth, no. 107, B12, pp. 1-14. DOI: 10.1029/2001JB000616.
11.   Jakobsson M., Macnab R., Mayer L., Anderson R., Edwards M., Hatzky J., Schenke H. W., Johnson P. (2008) An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, no. 35, L07602, DOI: 10.1029/2008GL033520.
12.   Jakobsson M., Mayer L., Coakley B. et al. (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, no. 39, L12609, pp. p. 1-5. DOI: 10.1029/2012GL052219.
13.   Klenke M., Schenke H. W. (2002) A new bathymetric model for the central Fram Strait. Marine Gephysical Research, Volume 23, no. 4, pp. 367-378. DOI: 10.1023/A:1025764206736.
14.   Marks K. M., Smith W. H. F. (2006) An evaluation of publicly available global bathymetry grids. Marine Geophysical Research, Volume 27, no. 1, pp. 19-34. DOI: 10.1007/s11001-005-2095-4.
15.   Mayer L., Jakobsson M., Allen G., Dorschel B., Falconer R., Ferrini V., Lamarche G., Snaith H., Weatherall P. (2018) The Nippon Foundation - GEBCO Seabed 2030 Project: The Quest to See the WorldТs Oceans Completely Mapped by 2030 . Geosciences, Volume 8, no. 2, pp. 1-18. DOI: 10.3390/geosciences8020063.
16.   Smith W. H. F., Sandwell D. T. (1997) Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, no. 277, pp. 1956-1962.
17.   Tozer B., Sandwell D. T., Smith W. H. F., Olson C., Beale J. R., Wessel P. (2019) Global bathymetry and topography at 15 arc sec: SRTM15_PLUS. Earth and Space Science, no. 6, pp. 1-18. DOI: 10.1029/2019EA000658.
18.   Weatherall P., Marks K. M., Jakobsson M., Schmitt T., Tani S., Arndt J. E., Rovere M., Chayes D., Ferrini V., Wigley R. (2015) A new digital bathymetric model of the worldТs oceans. Earth and Space Science, no. 2, pp. 331-345.
Abramova A.S., 
(2021) Accuracy assessment of publicly available digital elevation models of the ocean floor, at the polygons of multibeam data coverage in the Norwegian and Barents Seas. Geodesy and cartography = Geodezia i Kartografia, 82(1), pp. 13-22. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-13-22
Publication History
Received: 08.06.2020
Accepted: 01.12.2020
Published: 20.02.2021


2021 January DOI: