DOI: 
10.22389/0016-7126-2021-967-1-23-33
1 Buryak Z.A.
2 Ukrainsky P.A.
3 Lukin S.V.
4 Terekhin E.A.
Year: 
№: 
967
Pages: 
23-33

Belgorod State University

1, 
2, 
3, 
4, 
Abstract:
The authors describe a methodology of automated making soil erosion class maps using ordinal logistic regression, where relief characteristics are predictors. For mapping, a probabilistic approach is used, in which it is proposed to evaluate the possibility of belonging to several arbitrary erosion classes for each point in space: unwashed, slightly washed and medium washed soils. The model was developed for ordinary chernozem soils of arable lands. Ground data on the degree of soil erosion were obtained from the materials of the latest round of a continuous soil erosion survey, 491 points. Basing on the spatial analysis of a high-resolution digital elevation model, geomorphometric characteristics were obtained: slope, aspect, and index of the topographic position. From here, three raster probability models for three categories of erosion were generated. The resulting erosion map is a classified raster, where each cell corresponds to the degree of blurring that had a maximum probability at a given point. For the studied area, it was possible to achieve high modeling accuracy and the correspondence of the obtained erosion map to the logic of the course of erosion-accumulative processes on the slopes.
The reported study was funded by RFBR according to the research project № 18-35-20018.
References: 
1.   Bulygan S. Yu., Achasov A. B., Lisetskii F. N. Ispol'zovanie integral'nogo analiza dannykh distantsionnogo zondirovaniya i tsifrovykh modelei rel'efa pri kartografirovanii pochvennogo pokrova chernozemnoi zony. Nauchnye vedomosti BelGU. Ser. «Estestvennye nauki», 2012, no. 21(140), pp. 143–153.
2.   Demikhov V. T., Dolganova M. V. Klimaticheskie i pochvennye faktory erozionnykh i deflyatsionnykh protsessov na territorii Bryanskoi oblasti. Nauchnyi al'manakh, 2015, no. 8(10), pp. 1180–1182. DOI: 10.17117/na.2015.08.1180.
3.   Ermolaev O. P. Geoinformatsionnoe kartografirovanie erozii pochv v regione Srednego Povolzh'ya. Pochvovedenie, 2017, no. 1, pp. 130–144. DOI: 10.7868/S0032180X17010075.
4.   Zhidkin A. P., Chendev Yu. G. Obzor sushchestvuyushchikh predstavlenii ob erozii pochv v Belgorodskoi oblasti. Nauchnye vedomosti BelGU. Ser. «Estestvennye nauki», 2014, no. 23(194), pp. 147–155.
5.   Zhogolev A. V., Savin I. Yu. Avtomatizirovannoe obnovlenie srednemasshtabnykh pochvennykh kart. Pochvovedenie, 2016, no. 11, pp. 1319–1327. DOI: 10.7868/S0032180X16110125.
6.   Zibrov G. V., Umyvakin V. M., Sumin A. I., Pakhmelkin A. V. Tipologicheskii regressionnyi analiz geoekologicheskogo sostoyaniya antropogenno-izmenennykh territorii Voronezhskoi oblasti. Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser. «Geografiya. Geoekologiya», 2017, no. 1, pp. 133–140.
7.   Kozlov D. N., Zhidkin A. P., Lozbenev N. I. Tsifrovoe kartografirovanie erozionnykh struktur pochvennogo pokrova na osnove imitatsionnoi modeli smyva (severnaya lesostep' Srednerusskoi vozvyshennosti). Byulleten' Pochvennogo instituta im. V. V. Dokuchaeva, 2019, no. 100, pp. 5–35. DOI: 10.19047/0136-1694-2019-100-5-35.
8.   Komissarov M. A., Davletshina M. R., Libel't P., Suleimanov R. R. Razvitie erozionnykh protsessov na chernozeme vyshchelochennom v Yuzhnom Priural'e. Izv. Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2011, Vol. 13, no. 5–2, pp. 82–85.
9.   Koshelev A. V. Tsifrovoe kartografirovanie pochv s ispol'zovaniem dannykh SRTM. Izv. Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 2018, no. 4(52), pp. 159–166.
10.   Lisetskii F. N., Polovinko V. V. Erozionnye kateny na zemlyanykh fortifikatsionnykh sooruzheniyakh. Geomorfologiya, 2012, no. 2, pp. 65–78. DOI: 10.15356/0435-4281-2012-2-65-77.
11.   Lukin S. V. Opyt biologizatsii zemledeliya v Belgorodskoi oblasti. Agrokhimicheskii vestnik, 2017, no. 5, pp. 21–25.
12.   Pavlova A. I. Primenenie metodov tsifrovogo modelirovaniya rel'efa dlya kartografirovaniya erozionnykh zemel'. Siberian Journal of Life Sciences and Agriculture, 2016, no. 2(74), pp. 159–169. DOI: 10.12731/wsd-2016-2-12.
13.   Savin I. Yu. Problema masshtaba v sovremennoi pochvennoi kartografii. Byulleten' Pochvennogo instituta im. V. V. Dokuchaeva, 2019, no. 97, pp. 5–20. DOI: 10.19047/0136-1694-2019-97-5-20.
14.   Savin I. Yu., Simakova M. S. Sputnikovye tekhnologii dlya inventarizatsii i monitoringa pochv v Rossii. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, no. 5, pp. 104–115.
15.   Solovichenko V. D., Tyutyunov S. I. Metodika provedeniya pochvenno-erozionnogo obsledovaniya sklonovykh zemel' Belgorodskoi oblasti: Ucheb.-proizv. posobie. Belgorod: Otchii krai, 2014, 44 p.
16.   Sorokina N. P., Kozlov D. N. Opyt tsifrovogo kartografirovaniya struktury pochvennogo pokrova. Pochvovedenie, 2009, no. 2, pp. 198–210.
17.   Shatokhin A. V., Achasov A. B. Ispol'zovanie sovremennykh tekhnologii pri kartografirovanii pochvennogo pokrova Severnoi Donetskoi stepi. Pochvovedenie, 2005, no. 7, pp. 790–798.
18.   Shvebs G. I. Formirovanie vodnoi erozii stoka nanosov i ikh otsenka. Leningrad: Gidrometeoizdat, 1974, 184 p.
19.   Erozionno-ruslovye sistemy. Pod. red. R. S. Chalova, V. N. Golosova, A. Yu. Sidorchuka. Moskva: INFRA-M, 2017, 702 p.
20.   Cohen M. J., Shepherd K. D., Walsh M. G. (2005) Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, no. 124, pp. 235-252. DOI: 10.1016/j.geoderma.2004.05.003.
21.   Del Pino J. S. N., Ruiz-Gallardo J. R. (2015) Modelling post-fire soil erosion hazard using ordinal logistic regression: a case study in South-eastern Spain. Geomorphology, no. 232, pp. 117-124. DOI: 10.1016/j.geomorph.2014.12.005.
22.   Lagacherie P., McBratney A. B., Voltz M. (2007) Digital soil mapping: an introductory perspective. Developments in Soil Science. V. 31. Elsevier: Amsterdam. 600 p.
23.   Lipsitz S. R., Fitzmaurice G. M., Molenberghs G. (1996) Goodness-of-fit tests for ordinal response regression models. Journal of the Royal Statistical Society. Series C. Applied Statistics, Volume 45, no. 2, pp. 175-190.
24.   McCullagh P. (1980) Regression models for ordinal data. Journal of the Royal Statistical Society. Series B. Methodological, Volume 42, no. 2, pp. 109-127.
25.   Millward A. A., Mersey J. E. (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, Volume 38, no. 2, pp. 109-129. DOI: 10.1016/S0341-8162(99)00067-3.
26.   Morgan R. P. C. (1979) Soil erosion. London, New York: Longman. 113 p.
27.   Mulder V. L., De Bruin S., Schaepman M. E., Mayr T. R. (2011) The use of remote sensing in soil and terrain mapping - A review. Geoderma, no. 162, pp. 1-19. DOI: 10.1016/j.geoderma.2010.12.018.
28.   Reuter H. I., Nelson A. (2009) Geomorphometry in ESRI packages. Developments in soil science, no. 33, pp. 269-291. DOI: 10.1016/S0166-2481(08)00011-1.
29.   Veall M. R., Zimmermann K. F. (1994) Evaluating pseudo-R2Тs for binary probit models. Quality and Quantity, Volume 28, no. 2, pp. 151-164.
30.   Weiss A. Topographic position and landforms analysis. URL: www.jennessent.com/arcview/TPI_Weiss_poster.htm (accessed: 15.03.2020).
31.   Yee T. W. (2010) The VGAM package for categorical data analysis. Journal of Statistical Software, Volume 32, no. 10, pp. 1-34. DOI: 10.18637/jss.v032.i10.
32.   Zhu A.X., Moore A. C., Smith M. P., Liu J., Burt J. E., Qi F., Simonson D., Hempel J., Lubich K. (2004) Advance in information technology for soil surveys: The SoLIM effort. Thailand: Innovative techniques in soil survey. pp. 25-42.
Citation:
Buryak Z.A., 
Ukrainsky P.A., 
Lukin S.V., 
Terekhin E.A., 
(2021) Digital mapping of soil erosion using ordinal regression. Geodesy and cartography = Geodezia i Kartografia, 82(1), pp. 23-33. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-23-33
Publication History
Received: 26.03.2020
Accepted: 28.10.2020
Published: 20.02.2021

Content

2021 January DOI:
10.22389/0016-7126-2021-967-1

QR-code page

QR-код страницы