UDC: 
DOI: 
10.22389/0016-7126-2021-971-5-23-38
1 Kurepina N.Yu.
2 Rybkina I.D.
Year: 
№: 
971
Pages: 
23-38

RAS SB Water and Environmental Problems Institute, (IWEP SB RAS)

1, 
2, 
Abstract:
In the paper, the use of cartographic research method for the analysis and generalization of materials describing extreme events associated with rarely recurring high water and flooding in river basins of the Upper Ob is proposed. Basing on statistical data obtained from municipalities of the adjacent regions (Altai Krai, Republic of Altai, Kemerovo, Novosibirsk and Tomsk oblasts), including the information provided by territorial bodies of the RF Emergency Situations Ministry, we created a database for assessing actual and probable damage to population and economy of the study territories. Actual damage is generalized and analyzed in the context of river basins and municipalities of the entities, i.e. subjects of the Russian Federation. In order to assess probable damage, cartographic sources, including open data from the Internet as well as modern software tools were involved. The estimation of probable damage to population and economic objects was performed by the example of settlements (including those suffered from extreme flooding of 2014) located in the Charysh basin (Altai Krai). For that GIS projects and a series of damage evaluation maps were created. River basins of the Upper Ob regions were ranked according to recurrence frequency of extreme events and the extent of actual damage to population and economy there in 2004–2018. On the basis of these results, recommendations to prevent emergencies caused by the negative impact of water were developed.
The study was carried out within the framework of the Science Program of IWEP SB RAS (project № 0306-2021-0002)
References: 
1.   Antonov V.N., Novgorodceva O.G. Monitoring i kartografirovanie pavodkovoj situacii v Sibirskom federal'nom okruge. Interehkspo GEO-Sibir'-2015. XI Mezhdunar. nauch. kongr., 13–25 aprelya 2015 g., Novosibirsk: Mezhdunar. nauch. konf. «Distancionnye metody zondirovaniya Zemli i fotogrammetriya, monitoring okruzhayushchej sredy, geoehkologiya»: Sb. materialov, Novosibirsk: izd. SGUGiT, 2015, v 2-h tomah Vol. 1, pp. 104–110.
2.   Borisova T. A. Kartografirovanie riskov ot navodnenii na rekakh basseina ozera Baikal. Uspekhi sovremennogo estestvoznaniya, 2016, no. 4, pp. 121–125.
3.   Borisova T. A. Problema kartografirovaniya i dokumentirovaniya zon zatopleniya i podtopleniya na rekakh basseina Selengi. Ulan-Ude: BGU im. D. Banzarova, 2018, pp. 225–228.
4.   Borshch S. V., Samsonov T. E., Simonov Yu. A., L'vovskaya E. A. Vizualizatsiya gidrologicheskoi obstanovki v basseinakh krupnykh rek sredstvami GIS-tekhnologii. Tr. gidrometeorologicheskogo nauchno-issledovatel'skogo tsentra Rossiiskoi Federatsii, 2013, no. 349, pp. 47–62.
5.   Gladkevich G. I., Terskii P. N., Frolova N. L. Otsenka opasnosti navodnenii na territorii Rossiiskoi Federatsii. Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie, 2012, no. 2, pp. 29–46.
6.   Golubeva A. B., Zemtsov V. A. Otsenka opasnosti i riskov navodnenii v g. Barnaule (pos. Zaton). Vestnik TGU, 2013, no. 373, pp. 183–188.
7.   Dobrovol'skii S. G., Istomina M. N. Navodneniya mira. Moskva: GEOS, 2006, 256 p.
8.   Zinov’ev A.T., Lovtskaya O.V., Baldakov N.A., Golubeva A.B. Prostranstvennye dannye dlya analiza opasnykh gidrologicheskikh situatsii. Barnaul: Tipografiya ″Grafiks″, 2014, pp. 83–89.
9.   Kurbatova I. E., Gorbachev D. V. Opyt ispol'zovaniya animatsionnogo kartografirovaniya dlya izucheniya katastroficheskikh navodnenii. Geo-Sibir, 2010, Vol. 1, no. 3, pp. 107–111.
10.   Metodika otsenki veroyatnostnogo ushcherba ot vrednogo vozdeistviya vod i otsenki effektivnosti osushchestvleniya preventivnykh vodokhozyaistvennykh meropriyatii. Moskva: FGUP «VIEMS», 2005, 154 p.
11.   Nigmetov G. M., Larionov V. I., Filatov Yu. A., Pchelkin V. I., Ul'yanov S. V., Sorogin A. A., Yuzbekov N. S. Zonirovaniya territorii Rossiiskoi Federatsii po velichine riska ot navodnenii. Tekhnologii grazhdanskoi bezopasnosti, 2003, no. 1-2, pp. 30–36.
12.   Organizatsionnye i sanitarno-gigienicheskie osnovy sistemy meropriyatii po obespecheniyu sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v period navodneniya v territoriyakh Yugo-Zapadnoi Sibiri: Monografiya. Pod red. G. G. Onishchenko, I. P. Saldan. Barnaul: Azbuka, 2016, 407 p.
13.   Osipov V. I. Prirodnye opasnosti i strategicheskie riski v mire i v Rossii. Ekologiya i zhizn', 2009, no. 11-12, pp. 5–15.
14.   Pokrovskii V. D., Dutova E. M., Kuzevanov K. I., Pokrovskii D. S. Informatsionno-poiskovaya sistema otsenki stepeni podtoplyaemosti territorii goroda Tomska. Vestnik TGASU, 2015, no. 1, pp. 172–181.
15.   Taratunin A. A. Navodneniya na territorii Rossiiskoi Federatsii. Ekaterinburg: Izd-vo FGUP «RosNIIVKh», 2008, 431 p.
16.   Terskii P. N. Otsenka potentsial'noi opasnosti navodnenii na rekakh basseina Severnoi Dviny. Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie, 2011, no. 3, pp. 90–101.
17.   Shikhov A. N., Abdulin R. K. Atlasnoe veb-kartografirovanie opasnykh gidrometeorologicheskikh yavlenii Ural'skogo Prikam'ya. Vestnik Permskogo federal'nogo issledovatel'skogo tsentra, 2019, no. 3, pp. 49–60. DOI: 10.7242/2658-705X/2019.3.5.
18.   Amen K. Application of Remote Sensing and GIS for Floodplain mapping and Hydraulic design. URL: www.academia.edu/20126182/Application_of_Remote_Sensing_and_GIS_for_Floodplain_mapping_and_Hydraulic_design (accessed: 10.02.2021).
19.   Chen J., Hill A. A., Urbano L. D. (2009) A GIS-based model for urban flood inundation. Journal of Hydrology, no. 373, 1-2, pp. 184–192. DOI: 10.1016/j.jhydrol.2009.04.021.
20.   Elkhrachy I. (2015) Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case Study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, no. 18, pp. 261–278. DOI: 10.1016/j.ejrs.2015.06.007.
21.   Getahun Y. S., Gebre S. L. (2015) Flood Hazard Assessment and Mapping of Flood Inundation Area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model. Civil and Environmental Engineering, Volume 4, no. 5, DOI: 10.4172/2165-784X.1000179.
22.   Glas H., Rocabado I., Huysentruyt S., Maroy E., Salazar Cortez D., Coorevits K., De Maeyer Ph., Deruyter G. (2019) Flood Risk Mapping Worldwide: A Flexible Methodology and Toolbox. Water, no. 11, DOI: 10.3390/w11112371.
23.   Olthof I., Svacina N. (2020) Testing Urban Flood Mapping Approaches from Satellite and In-Situ Data Collected during 2017 and 2019 Events in Eastern Canada. Remote Sensing, no. 12(19), DOI: 10.3390/rs12193141.
24.   Rincón D., Khan U. T., Armenakis C. (2018) Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences, no. 8: 275, DOI: 10.3390/geosciences8080275.
25.   Tam Tze Huey, Ab. Latif Ibrahim, Mohd Sani SaТayon, Muhammad Zulkarnain, Abdul Rahman (2010) Remote sensing methods for mapping flood-prone areas. 31st Asian Conference on Remote Sensing, ACRS 2010. Volume: Hanoi; Viet Nam.
Citation:
Kurepina N.Yu., 
Rybkina I.D., 
(2021) Cartographic research method of developing recommendations on prevention of water-related emergencies. Geodesy and cartography = Geodezia i Kartografia, 82(5), pp. 23-38. (In Russian). DOI: 10.22389/0016-7126-2021-971-5-23-38
Publication History
Received: 12.05.2020
Accepted: 05.03.2021
Published: 20.06.2021

Content

2021 May DOI:
10.22389/0016-7126-2021-971-5