UDC: 
DOI: 
10.22389/0016-7126-2021-972-6-47-54
1 Pantushin V.A.
2 Andreev A.A.
Year: 
№: 
972
Pages: 
47-54

State University Of Land Use Planning

1, 

Military Space academy named after A.F. Mozhaisky (MSА named after A.F. Mozhaisky)

2, 
Abstract:
The technology of the schemes development automation for areal coverage with aerial and space photography materials is proposed. Within its framework, a method for automatic coordinate referencing of images on the Earth’s ellipsoid surface with the subsequent determination of nomenclature sheets of topographic maps on a composite table was substantiated and implemented. The proposed method is based on the algorithms for calculating the azimuths and lengths of lines connecting the projections of the photographing points (inverse geodetic problem) and the coordinates of the images corner points’ projections (direct geodetic problem). The formulas for solving the geodetic tasks of the images coordinate referencing over long distances are obtained as a result of transforming and integrating the equations of geodetic lines described by the Claireau equation though F. Bessel’s method. It can be used when planning and performing aerial and space surveys, as well as to determine the cartographic base in order to select the starting points for photogrammetric condensation of the geodetic network. The technology is focused on the automation of phototriangulation technical design procedures and is good for linking images to the corresponding sections of electronic and digital maps.
References: 
1.   Blokhinov Yu. B., Verkeenko M. S., Skryabin S. V., Andrienko E. E. Avtomaticheskoe orientirovanie neuporyadochennogo nabora perekryvayushchikhsya snimkov. Izvestiya Vuzov «Geodesy and aerophotosurveying», 2017, no. 5, pp. 91–98.
2.   Dmitriev V.G., Pantushin V.A. (1999) About design of the planning and high-rise basis in photogrammetric production. Geodesy and Cartography, 60(9), pp. 25-28.
3.   Evstratova L. G. Strukturnaya model' izmeneniya tochnosti pri fotogrammetricheskoi obrabotke aerokosmicheskikh snimkov. Krasnoyarsk: Sibirskii fed. un-t, 2019, pp. 92–95.
4.   Morozov V.P. Kurs sferoidicheskoj geodezii. Izd. 2-e, pererab. i dop. M.: Nedra, 1979, 295 p.
5.   Polovnev O. V. Povyshenie tochnosti opredeleniya parametrov svyazi sistem koordinat i vysot. Izvestiya Vuzov «Geodesy and aerophotosurveying». Sbornik statei po itogam nauchno-tekhnicheskoi konferentsii, 2015, no. 8, pp. 3–7.
6.   Starovoitov V. V., Golub Yu. I. Tsifrovye izobrazheniya: ot polucheniya do obrabotki. Minsk: OIPI NAN Belarusi, 2014, 202 p.
7.   Tkachenko A. I. Dva algoritma privyazki nazemnykh ob"ektov po kosmicheskim snimkam. Kosmicheskaya nauka i tekhnologiya, 2018, no. 3(112), pp. 69–74. DOI: 10.15407/knit2018.03.069.
8.   Khodaverdi zahraeea N., Rastiveis H. (2017) Object-oriented analysis of satellite images using artificial neural networks for post-earthquake buildings change detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XLII-4/W4, pp. 139–144. DOI: 10.5194/isprs-archives-XLII-4-W4-139-2017.
9.   Kocaman S., Gruen A. (2008) Geometric modeling and validation of alos/prism imagery and products. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XXXVII, B1, URL: www.isprs.org/proceedings/XXXVII/congress/1_pdf/126.pdf (accessed: 20.12.2020).
10.   Poli D. (2002) General model for airborne and spaceborne linear array sensors. URL: www.isprs.org/proceedings/XXXIV/part1/paper/00033.pdf (accessed: 20.12.2020).
Citation:
Pantushin V.A., 
Andreev A.A., 
(2021) Coordinate binding of images for designing phototrangulation. Geodesy and cartography = Geodezia i Kartografia, 82(6), pp. 47-54. (In Russian). DOI: 10.22389/0016-7126-2021-972-6-47-54
Publication History
Received: 21.12.2020
Accepted: 25.03.2021
Published: 20.07.2021

Content

2021 June DOI:
10.22389/0016-7126-2021-972-6