DOI: 
10.22389/0016-7126-2021-973-7-32-42
1 Pshenichnikov A.E.
Year: 
№: 
973
Pages: 
32-42

Tyumen State University

1, 
Abstract:
The results of studying the changes in thermocarst lakes of Russia based on comparing space images from Landsat satellites taken at an interval of approximately 20 years are presented. Comparison of multi-temporal images was made for 13 test sites in various areas of the cryolithozone (north of the European part of Russia, Western Siberia, north of Eastern Siberia, Transbaikal hollows, Central Yakutia, the Far East and Chukotka). In total, a little more than 117,000 lakes are covered by the study. Interpretation of space images is performed with QGIS software complex in automated mode using spectral index NDWI. The analysis of data at most reference sites (9 of 13) revealed negative dynamics both in the area and the number of lakes. The largest changes were recorded for ponds (area up to 5 hectares) – a reduction in the number and area by 12%. Minimal losses were identifi ed for the “very large lakes” group – 6.2 and 3 %, respectively. The increase in average annual air temperatures observed in most reference areas did not cause a widespread increase in the number and total area of thermocarst lakes. Only in 3 sections (Yessei and Verkhneangarsk hollows, Lena river delta), the increase in lake areas was most likely the result of the activation of thermocarst and thermoabrasion processes under conditions of rising average annual air temperature. It was concluded that the connection between the dynamics of lakes and the nature of permafrost rocks is not traced: for both continuous and island distribution, multi-directional changes in the number and area of lakes are characteristic.
References: 
1.   Bryksina N. A., Polishchuk V. Yu., Polishchuk Yu. M. Izuchenie vzaimosvyazi izmenenii klimaticheskikh i termokarstovykh protsessov v zonakh sploshnoi i preryvistoi merzloty Zapadnoi Sibiri. Vestn. Yugor. un-ta, 2009, no. 3, pp. 3–12.
2.   Veremeeva A. A., Glushkova N. V. Formirovanie rel'efa v raionakh rasprostraneniya otlozhenii ledovogo kompleksa v tundrakh Kolymskoi nizmennosti (po dannym kosmicheskoi s"emki). Kriosfera Zemli, 2016, Vol. 20, no. 1, pp. 15–25.
3.   Kirpotin S. N., Polishchuk Yu. M., Bryksina N. A. Dinamika ploshchadei termokarstovykh ozer v sploshnoi i preryvistoi kriolitozonakh Zapadnoi Sibiri v usloviyakh global'nogo potepleniya. Vest. Tomsk. un-ta, 2008, no. 311, pp. 185–189.
4.   Kravtsova V. I., Rodionova T. V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovyh ozjor v razlichnyh rajonah kriolitozony Rossii po kosmicheskim snimkam. Kriosfera Zemli, 2016, Vol. XX, no. 1, pp. 81–89.
5.   Kravtsova V. I., Tarasenko T. V. Izuchenie i kartografirovanie dinamiki termokarstovykh ozer na territorii Zapadnoi Sibiri po raznovremennym kosmicheskim snimkam. Dinamika okruzhayushchei sredy i global'nye izmeneniya klimata, 2010, no. 1. C. 82–87,
6.   Natsional'nyi atlas Rossii. T. 2. Priroda. Ekologiya. Moskva: PKO «Kartografiya», 2007, V 4-kh tomakh. Vol. 2, 496 p.
7.   Sannikov G. S. Prirodnye faktory dinamiki malykh termokarstovykh ozer na territorii Bovanenkovskogo gazovogo mestorozhdeniya. Izv. vuzov. Neft' i gaz, 2015, no. 3, pp. 122–126. – DOI 10.31660/0445-0108-2015-3-122-126.
8.   Duguay C. R., Prowse T. D., Bonsal B. R., Brown R. D., Lacroix M. P., Ménard P. (2006) Recent trends in Canadian lake ice covers. Hydrological Processes, Volume 20, no. 4, pp. 781–801.
9.   Jones B. M., Grosse G., Arp C. D., Jones M. C., Walter Anthony K. M., Romanovsky V. E. (2011) Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res., Volume 116, no. G00M03, DOI: 10.1029/2011JG001666.
10.   Labrecque S., Lacelle D., Duguay C.R., Lauriol B., Hawkings J. (2009) Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic, no. 62(2), pp. 225–238.
11.   McFeeters S. K. (1996) The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, no. 17, pp. 1425–1432.
12.   Riordan B., Verbyla D., McGuire A. D. (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research: Biogeosciences, no. 111(G4), DOI: 10.1029/2005JG000150.
13.   Smith L. C., Sheng Y., MacDonald G. M., Hinzman L. D. (2005) Disappearing Arctic lakes. Science, no. 308:1429, DOI: 10.1126/science.1108142.
14.   Swanson D. K. (2019) Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arctic, Antarctic, and Alpine Research, no. 51:1, pp. 265–279. DOI: 10.1080/15230430.2019.1629222.
Citation:
Pshenichnikov A.E., 
(2021) Studying the dynamics of thermokarst lakes in various regions of Russian cryolithozone, using satellite images for the first two decades of the XXI century. Geodesy and cartography = Geodezia i Kartografia, 82(7), pp. 32-42. (In Russian). DOI: 10.22389/0016-7126-2021-973-7-32-42
Publication History
Received: 06.03.2021
Accepted: 30.07.2021
Published: 20.08.2021

Content

2021 July DOI:
10.22389/0016-7126-2021-973-7