UDC: 
DOI: 
10.22389/0016-7126-2021-975-9-2-10
1 Murzabekov M.M.
2 Bobrov D.S.
3 Davlatov R.A.
4 Lopatin V.P.
5 Pchelin I.N.
Year: 
№: 
975
Pages: 
2-10

FSUE «All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements» (FSUE «VNIIFTRI»)

1, 
2, 
3, 
4, 

Geodesy, ltd

5, 
Abstract:
The authors present the results of comparing the components of deflection of vertical obtained through astronomical-geodetic and navigational-geodetic methods. The first one is based on comparing astronomical and geodetic coordinates of a location. This method has recently been widely implemented in a digital zenith camera systems using a small-sized digital telescope with an astronomical camera based on CCD or CMOS technologies, a high-precision inclinometer and satellite navigation system receiver. In this case, the combination of a telescope, an astronomical camera and an inclinometer enables determining the local direction of the plumb line, expressed by astronomical coordinates, from observations of stars at the zenith and using high-precision star catalogs. The navigational-geodetic method is based on comparing the results of the normal heights’ increments, defined through geometric leveling, and geodetic heights, computed with the relative method of satellite coordinate determinations. For each method, random and systematic components of the error and its confidence bounds were calculated; the absolute values of the deflection of vertical components at two geographically separated points were compared.
References: 
1.   Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli. Pod obshchei red. V. G. Peshekhonova; nauch. redaktor O. A. Stepanov. SPb: Kontsern «TsNII «Elektropribor», 2017, 390 p.
2.   Sokolov A. V., Krasnov A. A., Kuz'mina N. V., Yashnikova O. M. Puti resheniya problemy uklonenii otvesnoi linii kak istochnika metodicheskikh oshibok inertsial'nykh navigatsionnykh sistem. Sb. tr. XIII Vseros. soveshchaniya po problemam upravleniya, Moskva: Institut problem upravleniya im. V. A. Trapeznikova RAN, 2019, pp. 1342–1347.
3.   Albayrak M., Halicioğlu K., Özlüdemir M. T., Başoğlu B., Deniz R., Tyler A. R. B., Aref M. M. (2019) The use of the automated digital zenith camera system in Istanbul for the determination of astrogeodetic vertical deflection. Boletim de Ciencias Geodesicas, no. 25 (4), DOI: 10.1590/s1982-21702019000400025.
4.   Tse C. M., Baki Iz. H. (2006) Deflection of the Vertical Components from GPS and Precise Leveling Measurements in Hong Kong. Journal of Surveying Engineering, no. 132 (3), pp. 97–100. DOI: 10.1061/(ASCE)0733-9453(2006)132:3(97).
Citation:
Murzabekov M.M., 
Bobrov D.S., 
Davlatov R.A., 
Lopatin V.P., 
Pchelin I.N., 
(2021) Results of comparing astronomical-geodetic and navigational-geodetic methods of determining the components of the deflection of vertical. Geodesy and cartography = Geodezia i Kartografia, 82(9), pp. 2-10. (In Russian). DOI: 10.22389/0016-7126-2021-975-9-2-10