DOI: 
10.22389/0016-7126-2022-988-10-20-28
1 Balybina A.S.
2 Trofimova I.E.
Year: 
№: 
988
Pages: 
20-28

Sochava Institute of Geography SB RAS

1, 
2, 
Abstract:
Long-term temperature conditions of 3,2 m thick soil layer are studied based on the data of Transbaikalian weather stations. Among all the thermal factors, the most informative one, the smallest monthly mean temperature in the annual cycle at the standard measurement depth, is used. Its vertical profiles reflect the depth variations of the temperature and its spatial diversity. They constitute the base for a newly developed graphical classification scheme for wintery thermal conditions of soils. It includes five types of the thermal conditions: moderately cold, cold, very cold, severe, and extreme. They are all indicated in the orographic scheme at the areas of temperature measurements. Cartographic models of this type are especially topical for the case of rather complicated relief of Transbaikalian highlands. The models can reveal tendencies in geographical differentiation of the soils’ thermal conditions. In spite of the thermal field inhomogeneity, the trend of increasing wintery cooling of soils from south to north is pronounced. The very cold condition is the main type of the soil’s state in the southern Transbaikalia while the severe and extreme status is typical for its northern part. On the one hand, this method opens a perspective for broadening the spatial picture of the soils’ thermal conditions and, in spite of the possible difference in the factors controlling the soil temperature, the method can be applied for other regions with contrasting landscape-geographical situation. On the other hand, the differentiated estimation of the current thermal state of Transbaikalian soils we obtained can be used for choosing the most effective ways of nature protection policy adjustment to the enhanced climate aridisation and anthropogenic affecting the nature, especially in the modern agricultural land tenure of steppe landscapes.
This work is supported by budgetary funding of the Basic Research program No. АААА-А21-121012190059-5.
References: 
1.   Boldanov T. A., Mukhin G. D. Ekologicheskaya adaptatsiya sel'skokhozyaistvennogo zemlepol'zovaniya v usloviyakh izmeneniya klimata v Respublike Buryatiya. Aridnye ekosistemy, 2019, Vol. 25, no. 1 (78), pp. 10–19. DOI: 10.24411/1993-3916-2019-00040.
2.   Voropai N. N., Kiselev M. V., Cherkashina A. A. Monitoring temperatury pochvy na mnogoletnemerzlykh porodakh v estestvennykh i antropogenno narushennykh usloviyakh Tunkinskoi kotloviny. Led i sneg, 2019, Vol. 59, no. 4, pp. 517–528. DOI: 10.15356/2076-6734-2019-4-421.
3.   Dambiev E. Ts., Tulokhonov A. K. Antropogennoe opustynivanie v Buryatii. Geografiya i prirodnye resursy, 1993, no. 3, pp. 60–64.
4.   Kitaev L.M., Ableeva V.A., Asainova Zh.A., Zheltukhin A.S., Korobov E.D. Sezonnaya dinamika temperatury vozdukha, snegozapasov i promerzaniya pochvy v tsentral'noi chasti Vostochno-Evropeiskoi ravniny. Led i sneg, 2017, Vol. 57, no. 4, pp. 518–526. DOI: 10.15356/2076-6734-2017-4-518-526.
5.   Stochkute Yu. V., Vasilevskaya L. N. Mnogoletnie izmeneniya temperatury vozdukha i pochvy na krainem severo-vostoke Rossii. Geograficheskii vestnik, 2016, no. 2 (37), pp. 84–96. DOI: 10.17072/2079-7877-2016-2-84-96.
6.   Fedorov-Davydov D. G., Davydov S. P., Davydova A. I., Ostroumov V. E., Kholodov A. L., Sorokovikov V. A., Shmelev D. G. Temperaturnyi rezhim pochv Severnoi Yakutii. Kriosfera zemli, 2018, Vol. 22, no. 4, pp. 15–24. DOI: 10.21782/KZ1560-7496-2018-4(15-24).
7.   Kharyutkina E. V., Loginov S. V. Tendentsii vremennykh izmenenii temperatury pochvy na glubinakh v Zapadnoi Sibiri po dannym reanaliza. Geografiya i prirodnye resursy, 2019, no. 2, pp. 95–102. DOI: 10.21782/GIPR0206-1619-2019-2(95-102).
8.   Khoshhal Jahromi F., Sabziparvar A. A., Mahmoudvand R. (2021) Spectral analysis of soil temperature and their coincidence with air temperature in Iran. Environmental monitoring and assessment, Volume 193, no. 72, DOI: 10.1007/s10661-020-08828-8.
9.   Song Y., Chen H., Huang A. (2022) The storage of antecedent precipitation and air temperature signals in soil temperature over China. Journal of Hydrometeorology, Volume 23, no. 3, pp. 377–388. DOI: 10.1175/JHM-D-21-0126.1.
10.   Trofimova I. E., Balybina A. S. (2017) Geographical Patterns of the Summer Thermal Regime of Soils in Transbaikalia. Geography and Natural Resources, Volume 38, no. 4, pp. 372–379. DOI: 10.1134/S1875372817040096.
11.   Xie X., Lu Y., Ren T., Horton R. (2019) Soil temperature estimation with the harmonic method is affected by thermal diffusivity parameterization. Geoderma, no. 353, pp. 97–103. DOI: 10.1016/j.geoderma.2019.06.029.
Citation:
Balybina A.S., 
Trofimova I.E., 
(2022) Approaches to mapping the soils’ thermal regime under the conditions of Transbaikalia’s contrasting relief. Geodesy and cartography = Geodezia i Kartografia, 83(10), pp. 20-28. (In Russian). DOI: 10.22389/0016-7126-2022-988-10-20-28
Publication History
Received: 14.01.2021
Accepted: 24.10.2022
Published: 20.11.2022

Content

2022 October DOI:
10.22389/0016-7126-2022-988-10