UDC: 
DOI: 
10.22389/0016-7126-2022-989-11-21-31
1 Fateev V.F.
2 Denisenko O.V.
3 Silvestrov I.S.
4 Bobrov D.S.
5 Murzabekov M.M.
6 Davlatov R.A.
7 Lopatin V.P.
Year: 
№: 
989
Pages: 
21-31

FSUE «All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements» (FSUE «VNIIFTRI»)

1, 
2, 
3, 
4, 
5, 
6, 
7, 
Abstract:
The article deals with the matters of creating an integrated navigation system using measurements of the Earth`s gravitational and magnetic fields’ parameters (EGF and EMF). Such a system is to contain a strapdown inertial navigation system (SINS), as well as sensors for the current parameters of the EGF and EMF. Its simulation was carried out. As a result it was found out that, due to the use of information on the parameters of the EGF and EMF, an error of several hundred meters can be obtained. Based on the results of full-scale tests of the created integrated navigation system for the EGF and EMF, a real error of 900 m was obtained with a correction interval of SINS readings of 4 minutes. According to the results of modeling and testing of the mentioned system, the main tasks and ways to solve them are identified. The requirements for measurers of geophysical fields’ parameters and navigation charts are considered, a number of new navigation meters, new methods and tools for preparing navigation charts are proposed. The ways of developing relativistic geodesy and the possibility of using the gravitational-wave astronomy achievements in gravimetry are considered.
References: 
1.   Aleinikov M. S., Baryshev V. N., Blinov I. Yu., Kupalov D. S., Osipenko G. V. Perspektivy razrabotki chuvstvitel'nogo atomnogo interferometra na kholodnykh atomakh rubidiya. Izmeritel'naya tekhnika, 2020, no. 7, pp. 9–12. DOI: 10.32446/0368-1025it.2020-7-9-12.
2.   Vitushkin L. F., Karpeshin F. F., Krivtsov E. P., Krolitskii P. P., Nalivaev V. V., Orlov O. A., Khaleev M. M. Gosudarstvennyi pervichnyi spetsial'nyi etalon uskoreniya dlya gravimetrii GET 190-2019. Izmeritel'naya tekhnika, 2020, no. 7, pp. 3–8. DOI: 10.32446/0368-1025it.2020-7-3-8.
3.   Golovan A. A., Klevtsov V. V., Koneshov I. V., Smoller Yu. L., Yurist S. Sh. Osobennosti ispol'zovaniya gravimetricheskogo kompleksa GT-2A v zadachakh aerogravimetrii. Fizika Zemli, 2018, no. 4, pp. 127–134. DOI: 10.1134/S000233371804004X.
4.   Denisenko O. V., Pustovoit V. I., Sil'vestrov I. S., Fateev V. F. Problemy razvitiya besshovnoi assistiruyushchei tekhnologii navigatsii v GNSS GLONASS na osnove izmerenii parametrov geofizicheskikh polei. Al'manakh sovremennoi metrologii, 2020, no. 4 (24), pp. 127–160.
5.   Pustovoit V. I., Donchenko S. I., Denisenko O. V., Fateev V. F. Kontseptsiya sozdaniya kosmicheskoi lazernoi gravitatsionnoi antenny na geotsentricheskoi orbite GLONASS «SOIGA». Al'manakh sovremennoi metrologii, 2020, no. 1 (21), pp. 27–49.
6.   Fateev V. F. Relyativistskaya teoriya i primenenie kvantovogo nivelira i seti «Kvantovyi futshtok». Al'manakh sovremennoi metrologii, 2020, no. 3, pp. 11–52.
7.   Fateev V. F., Lopatin V. P. Kosmicheskii bistaticheskii radiolokator kontrolya profilya poverkhnosti okeana na osnove signalov GNSS. Izv. vuzov. Priborostroenie, 2019, Vol. 62, no. 5, pp. 484–491. DOI: 10.17586/0021-3454-2019-62-5-484-491.
8.   Yuzefovich A. P. Pole sily tyazhesti i ego izuchenie. Moskva: Izd-vo MIIGAiK, 2014, 194 p.
9.   Abramovici A., Althouse W. E., Drever R. W. P. et al. (1992) LIGO: The laser interferometer gravitational-wave observatory. Science, no. 256, pp. 325–333. DOI: 10.1126/science.256.5055.325.
10.   Antoniou M., Cherniakov M. (2013) GNSS-based bistatic SAR: a signal processing view. EURASIP Journal on Advances in Signal Processing, no. 98, pp. 1–16. DOI: 10.1186/1687-6180-2013-98.
11.   Beggan C. D., Macmillan S., Brown W. J., Grindrod S. J. (2021) Quantifying global and random uncertainties in high resolution global geomagnetic field models used for directional drilling. SPE Drilling and Completion, no. 36, pp. 603–612. DOI: 10.2118/204038-PA.
12.   Clarizia M. P., Gommenginger C. P., Gleason S. T. et al. (2009) Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean. Geophysical Research Letters, Volume 36, no. 2, pp. 1–5. DOI: 10.1029/2008GL036292.
13.   Delva P., Puchades N., Schönemann E. et al. (2018) Gravitational Redshift Test Using Eccentric Galileo Satellites. Physical review letters, Volume 121, no. 23, pp. 1–6. DOI: 10.1103/PhysRevLett.121.231101.
14.   Drinkwater M., Floberghagen R., Haagmans R., Muzi D., Popescu A. (2003) GOCE: ESA's first earth explorer core mission. Space Science Reviews, no. 108, pp. 419–432. DOI: 10.1007/978-94-017-1333-7_36.
15.   Duchayne L., Flavien M., Peter W. (2007) Orbit determination for next generation space clocks. Astronomy and Astrophysics, Volume 504, no. 2, pp. 653–661. DOI: 10.1051/0004-6361/200809613.
16.   Fichter W., Gath P. R, Vitale S.O., Bortoluzzi D. (2005) LISA Pathfinder drag-free control and system implications. Classical and Quantum Gravity, no. 22 (10), pp. 139–148. DOI: 10.1088/0264-9381/22/10/002.
17.   Gillot P., Cheng B., Imanaliev A., Merlet S., Pereira Dos Santos F. (2016) The LNE-SYRTE cold atom gravimeter. Proceedings of the 30th EFTF, York, United Kingdom. pp. 1–3. DOI: 10.1109/EFTF.2016.7477832.
18.   Grotti1 J., Koller S., Vogt S. et al. (2018) Geodesy and metrology with a transportable optical clock. Nature Physics, no. 14, pp. 1–12. DOI: 10.1038/s41567-017-0042-3.
19.   Herrmann S., Finke F., Lulf M. et al. (2018) Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Physical review letters, Volume 121, no. 23, pp. 1–6. DOI: 10.1103/PhysRevLett.121.231102.
20.   Hirt C., Bürki B., Somieski A., Seeber G. (2010) Modern determination of vertical deflections using digital zenith cameras. Journal surveying engineering, no. 136, pp. 1–12. DOI: 10.1061/(ASCE)SU.1943-5428.0000009.
21.   Kornfeld R., Arnold B., Gross M. et al. (2019) GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. Journal of Spacecraft and Rockets, no. 56 (3), pp. 931–951. DOI: 10.2514/1.A34326.
22.   Krasnov A. ј., Sokolov A.V., Elinson L. S. (2014) A new air-sea shelf gravimeter of the Chekan series. Gyroscopy and Navigation, Volume 5, no. 3, pp. 131–137. DOI: 10.1134/S2075108714030067.
23.   Li W., Cardellach E., Fabra F., Ribó S., Rius A. (2018) Lake level and surface topography measured with spaceborne GNSS-reflectometry from CYGNSS mission: example for the lake Qinghai. Geophysical research letters, no. 45 (24), pp. 13,332–13,334. DOI: 10.1029/2018GL080976.
24.   Mai E. (2013) Time, Atomic Clock and Relativistic Geodesy. Deutsche Geodatische Kommission, Munchen, 126 p.
25.   Meyer B., Chulliat A., Saltus R. (2017) Derivation and error analysis of the Earth magnetic anomaly grid at 2arc min resolution version 3 (EMAG2v3). Geochemistry, Geophysics, Geosystems, no. 18 (31), pp. 4522–4537. DOI: 10.1002/2017GC007280.
26.   Min-Kang Z., Xiao-Chun D., Le-Le C. et al. (2015) Micro-Gal level gravity measurements with cold atom interferometry. Chinese Physics, no. 24 (5), pp. 401–501. DOI: 10.1088/1674-1056/24/5/050401.
27.   Müller J., Dirkx D., Kopeikin S. M., Lion G., Panet I., Petit G., Visser P. N. A. M. (2018) High performance clocks and gravity field determination. Space Science Reviews, no. 214 (5), pp. 1–27. DOI: 10.1007/s11214-017-0431-z.
28.   Takamoto M., Ushijima I., Ohmae N. et al. (2020) Test of general relativity by a pair of transportable optical lattice clocks. Nature Photonics, no. 14, pp. 411–415. DOI: 10.1038/s41566-020-0619-8.
29.   Tapley B., Bettadpur S., Watkins M., Reigber C. (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, Volume 31, no. 9, pp. L09607. DOI: 10.1029/2004GL019920.
30.   Wickert J., Cardellach E., Martín-Neira M. et al. (2016) GEROS-ISS: GNSS reflectometry, radio occultation, and scatterometry onboard the international space station. IEEE Journal of selected topics in applied Earth observations and remote sensing, no. 9 (10), pp. 4552–4581. DOI: 10.1109/JSTARS.2016.2614428.
31.   Wu X., Pagel Z., Bola S., Nguyen T., Zi F., Scheirer D., Müller H. (2019) Gravity surveys using a mobile atom interferometer. Science Advances, no. 5 (9), pp. 1–9. DOI: 10.1126/sciadv.aax0800.
Citation:
Fateev V.F., 
Denisenko O.V., 
Silvestrov I.S., 
Bobrov D.S., 
Murzabekov M.M., 
Davlatov R.A., 
Lopatin V.P., 
(2022) New methods and means of preparing maps for navigating geophysical fields of the Earth. Geodesy and cartography = Geodezia i Kartografia, 83(11), pp. 21-31. (In Russian). DOI: 10.22389/0016-7126-2022-989-11-21-31
Publication History
Received: 23.12.2020
Accepted: 01.12.2022
Published: 20.12.2022

Content

2022 November DOI:
10.22389/0016-7126-2022-989-11