DOI: 
10.22389/0016-7126-2022-990-12-12-21
1 Mazurova E.M.
2 Petrov A.N.
Year: 
№: 
990
Pages: 
12-21

Center of Geodesy, Cartography and SDI

1, 

Sternberg Astronomical Institute, Moscow State University

2, 
Abstract:
This is the second of the two articles on the Sagnac effect, one of the main relativistic effects. Its idea is retarding (advancing) signals propagating in opposite directions throughout the perimeter of a rotating disc. In the first article its theoretical substantiation was presented. These calculations make the basis for this paper to be used for describing the effect under real conditions on the surface of the rotating Earth. An optical fiber is to distribute the signal. A relativistic equation is written for a wave propagating in an optical fiber, which is used on the Earth`s surface to synchronize high-precision frequency standards. This formula is analyzed, the level of contributions of various relativistic effects is estimated, and the Sagnac’s is singled out as the main one. A joint consideration of the theoretical foundations and the influence of the phenomenon in applied tasks will be good for solving the matter of synchronizing high-precision frequency standards in a complex way.
The study was carried out within the framework of the FP “Maintenance, development and use of the GLONASS system” of the State Program of the Russia “Space activities of Russia” for 2021–2030,EGISU No. 1210806000081-5
References: 
1.   Mazurova E.M., Petrov A.N. (2022) Theoretical substantiations of the Sagnac effect. Geodezia i Kartografia, 83(10), pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2022-988-10-2-8.
2.   Malykin G.B. Effekt San'yaka. Korrektnye i nekorrektnye ob"yasneniya. Uspekhi fizicheskikh nauk, 2000, Vol. 170, no. 12, pp. 1325–1349. DOI: 10.3367/UFNr.0170.200012c.1325.
3.   Ashby N. (2003) Relativity in the Global Positioning System. Living Reviews in Relativity, no. 6, pp. 1–42. URL: http://www.livingreviews.org/lrr-2003-1 (accessed: 21.09.2022).
4.   Brumberg V. A., Kopejkin S. M. (1989) Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Il Nuovo Cimento B, no. 103, pp. 63–98. DOI: 10.1007/BF02888894.
5.   Ciufolini I., Pavlis E. C. (2004) A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, no. 431, pp. 958–960. DOI: 10.1038/nature03007.
6.   Damour T., Soffel M., Xu C.-M. (1991) General-relativistic celestial mechanics. I. Method and definition of reference systems. Physical Review D, no. 43, pp. 3273–3307. DOI: 10.1103/PhysRevD.43.3273.
7.   Damour T., Soffel M., Xu C.-M. (1992) General-relativistic celestial mechanics II. Translational equations of motion. Physical Review D, no. 45, pp. 1017–1044. DOI: 10.1103/PhysRevD.45.1017.
8.   Damour T., Soffel M., Xu C.-M. (1993) General-relativistic celestial mechanics III. Rotational equations of motion. Physical Review D, no. 47, pp. 3124–3135. DOI: 10.1103/PhysRevD.47.3124.
9.   Diaz J., Rodríguez-Gómez R., Ros E. (2015) White Rabbit: When every nanosecond counts. Xcell journal, no. 91, pp. 18–25.
10.   Everitt C. W. F., Debra D. B., Parkinson B. W., et. al. (2011) Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Physical Review Letters, no. 106, 221101, DOI: 10.1103/PhysRevLett.106.221101.
11.   Gersl J., Delva P., Wolf P. (2015) Relativistic corrections for time and frequency transfer in optical fibres. Metrologia, no. 52, pp. 1–42. DOI: 10.1088/0026-1394/52/4/552.
12.   Kopejkin S. M. (1988) Celestial coordinate reference systems in curved space-time. Celestial Mechanics, no. 44, pp. 87–115. DOI: 10.1007/BF01230709.
13.   Post E.J. (1967) Sagnac Effect. Reviews of Modern Physics, no. 39, pp. 475–481. DOI: 10.1103/RevModPhys.39.475.
14.   Rost M., Piester D., Yang W., Feldmann T., Wübbena T., Bauch A. (2012) Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps. Metrologia, no. 49 (6), pp. 772–778. DOI: 10.1088/0026-1394/49/6/772.
15.   Sagnac G. (1913) L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. Comptes rendus de l'Académie des Sciences, no. 157, pp. 708–710. URL: http://www.ether-wind.narod.ru/Sagnac_1913_10/Sagnac_1913_10_fr.pdf (accessed: 21.09.2022).
16.   Schiff L. I. (1960) On Experimental Tests of the General Theory of Relativity. American Journal of Physics, no. 28, pp. 340–343. DOI: 10.1119/1.1935800.
17.   Shapiro I. I. (1964) Fourth Test of General Relativity. Physical Review Letters, no. 13, pp. 789–791. DOI: 10.1103/PhysRevLett.13.789.
18.   Soffel M., Klioner S. A., Petit G., et. al. (2003) The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. The Astronomical Journal, no. 126 (6), pp. 2687–2706. DOI: 10.1086/378162.
Citation:
Mazurova E.M., 
Petrov A.N., 
(2022) The Sagnac effect in optic fiber link synchronization of high-precision frequency standards. Geodesy and cartography = Geodezia i Kartografia, 83(12), pp. 12-21. (In Russian). DOI: 10.22389/0016-7126-2022-990-12-12-21
Publication History
Received: 22.10.2022
Accepted: 01.11.2022
Published: 20.01.2023

Content

2022 December DOI:
10.22389/0016-7126-2022-990-12