1 Vasiliev N.P.
2 Vagizov M.R.

St. Petersburg State Forest Technical University named after S. M. Kirov

Two ways of rendering a regular terrain elevation grid using WebGL are considered: based on natural triangulation and that with preliminary smoothing of the surface. The natural one is built directly on the points of the original grid, which thus serve as the vertices of the triangular faces of the simulated surface. Pre-smoothing involves smooth interpolation, ensuring the continuity of the normal, over the given grid points. As a result, a more detailed triangulation is possible based on the calculated points of the interpolated surface. For the two proposed approaches, recurrent formulas for calculating the coordinates of vertices and normals necessary for the formation of the corresponding WebGL buffers are obtained; the advantages and disadvantages of the two ways are discussed. To identify the acceptability of conditions for natural triangulation, a number of numerical experiments were performed on the example of SRTM data using a specially developed WEB tool. The developed technological methods enabled integrating the Google map within a single tool and partially load the SRTM data corresponding to the selected area on the map, as well as vary the key rendering parameters.
1.   Vagizov M. R., Istomin E. P. Razrabotka tekhnologii geoinformatsionnogo modelirovaniya lesnykh ekosistem (chast' 2). Geoinformatika, 2022, no. 1, pp. 40–46. DOI: 10.47148/1609-364X-2022-1-40-46.
2.   Vasil'ev N. P. Gibridnye tekhnologii razrabotki prilozhenii dlya mobil'nykh platform. Informatsionnye sistemy i tekhnologii: teoriya i praktika: Sb. nauch. tr, 2017, 9. pp. 12–21.
3.   Vasil'ev N. P. Mobil'nye Cordova-prilozheniya sbora dannykh o sostoyanii lesnykh territorii s privyazkoi k geopozitsii. Izv. Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2020, no. 230, pp. 265–274. DOI: 10.21266/2079-4304.2020.230.265-274.
4.   Vasil'ev N. P. Universal'nye tekhnologii razrabotki mobil'nykh prilozhenii. Informatsionnye sistemy i tekhnologii: teoriya i praktika: Sb. nauch. tr, 2018, 10, ч. 1. pp. 23–30.
5.   Grigor'ev A. I., Kolmogorova S. S. Osobennosti virtual'noi realizatsii redko vstrechayushchikhsya ob"ektov elektronno-vychislitel'noi tekhniki. Informatsionnye tekhnologii i sistemy: upravlenie, ekonomika, transport, pravo, 2022, no. 2 (42), pp. 53–62.
6.   Koichi M., Rodzher L. WebGL: Programmirovanie trekhmernoi grafiki. Moskva: DMK Press, 2015, 494 p.
7.   Murtazina A. R., Smirnov E. E. Razrabotka kontseptsii internet-prilozheniya dlya sozdaniya 3D-vizualizatsii individual'nogo ukrasheniya s pomoshch'yu WebGL i Blender. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Ser.: Estestvennye i tekhnicheskie nauki, 2022, no. 1, pp. 82–86.
8.   Foks A., Pratt M. Vychislitel'naya geometriya. Primenenie v proektirovanii i na proizvodstve. Per. s angl. G. P. Babenko, G. P. Voskresenskogo. Moskva: Mir, 1982, 304 p.
9.   Feng L., Wang C., Li C., Li Z. (2011) A research for 3D WebGIS based on WebGL. Proceedings of 2011 international conference on computer science and network technology. IEEE, no. 1, pp. 348–351.
Vasiliev N.P., 
Vagizov M.R., 
(2022) Rendering a regular grid of terrain elevations using WebGL and natural triangulation. Geodesy and cartography = Geodezia i Kartografia, 83(12), pp. 49-56. (In Russian). DOI: 10.22389/0016-7126-2022-990-12-49-56
Publication History
Received: 28.04.2022
Accepted: 31.10.2022
Published: 20.01.2023


2022 December DOI:

QR-code page

QR-код страницы