ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Bronguleev V. V. Sovremennye ekzogeodinamicheskie rezhimy Russkoi ravniny. Geomorfologiya, 2000, no. 4, pp. 11–23. |
2. Geomorfologicheskaya karta. Sost. M. K. Grave, L. M. Grave // Atlas Murmanskoi oblasti. Moskva: GUGK, 1971, pp. 8. |
3. Timofeev D. A. O polimorfizme kak obshchem svoistve zemnoi poverkhnosti. Geomorfologiya, 2006, no. 2, pp. 3–6. |
4. Ufimtsev G. F. Geomorfologicheskaya konvergentsiya. Geomorfologiya, 2009, no. 4, pp. 16–28. |
5. Kharchenko S. V. K voprosu o primenenii garmonicheskogo analiza pri kolichestvennoi kharakteristike rel'efa. Geomorfologiya, 2017, no. 2, pp. 14–24. DOI: 10.15356/0435-4281-2017-2-14-24. |
6. Kharchenko S. V. Novye zadachi morfometrii rel'efa i avtomatizirovannye morfologicheskie klassifikatsii v geomorfologii. Geomorfologiya, 2020, no. 1, pp. 3–21. DOI: 10.31857/S043542812001006X. |
7. Chursin I.N., Aleshina A.R., Gorokhova I.N. (2019) Irrigated soil mapping of Volgograd region (Svetly Yar area) using Landsat-8 and Canopus-B satellite images. Geodezia i Kartografia, 80(12), pp. 31-41. (In Russian). DOI: 10.22389/0016-7126-2019-954-12-31-41. |
8. Yamashkin S.A., Radovanovic M.M., Yamashkin A.A., Vukovich D.V., Frolov A.N. (2016) Using ensemble-based systems for the landscapes mapping. Geodezia i Kartografia, (7), pp. 42-49. (In Russian). DOI: 10.22389/0016-7126-2016-913-7-42-49. |
9. Boehner J., Selige T. (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalization. In SAGA – Analysis and Modelling Applications. Goettingen: Goettinger Geographische Abhandlungen, pp. 13–28. URL: downloads.sourceforge.net/saga-gis/gga115_02.pdf (accessed: 12.03.2019). |
10. Breiman L. (2001) Random forests. Machine learning, Volume 45, no. 1, pp. 5–32. |
11. Florinsky I. V. (2016) Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Amsterdam: Elsevier Academic Press. 486 p. |
12. Gallant J. C., Dowling T. I. (2003) A multiresolution index of valley bottom flatness for mapping depositional areas. Water resources research, no. 39 (12), pp. 4–13. |
13. GMTED 2010. URL: clck.ru/apDWY (accessed: 15.11.2020). |
14. González-Díez A., Barreda-Argüeso J. A., Rodríguez-Rodríguez L., Fernández-Lozano J. (2021) The use of filters based on the Fast Fourier Transform applied to DEMs for the objective mapping of karstic features. Geomorphology, Volume 385, no. 107724, DOI: 10.1016/j.geomorph.2021.107724. |
15. Han H., Guo X., Yu H. (2016) Variable selection using mean decrease accuracy and mean decrease Gini based on random forest. 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). pp. 219–224. DOI: 10.1109/ICSESS.2016.7883053. |
16. Iwahashi J., Pike R. J. (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, no. 86, pp. 409-440. |
17. Longadge R., Dongre S. (2013) Class imbalance problem in data mining: review. International Journal of Computer Science and Network, Volume 2, no. 1, URL: clck.ru/apDxG (accessed: 15.11.2020). |
18. MacMillan R. A., Pettapiece W. W., Nolan S. C., Goddard T. W. (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, Volume 113, no. 1, pp. 81–109. |
19. Miska L., Jan H. (2005) Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, no. 67, pp. 3–4. |
(2022) Automatic recognition of the landforms origin in the Kola Peninsula based on morphometric variables. Geodesy and cartography = Geodeziya i Kartografiya, 83(2), pp. 12-25. (In Russian). DOI: 10.22389/0016-7126-2022-980-2-12-25 |